
Creating Cross-References Using a Suffix Array:

A Unique Way to Analize Koiné Greek and Music

Nathan Banks

B.Sc., Trinity Western University, 2004

Thesis Submitted In Partial Fulfillment Of

The Requirements For The Degree Of

Master of Science

in

Mathematical, Computer, And Physical Sciences

(Computer Science)

The University Of Northern British Columbia

August 2009

c© Nathan Banks, 2009

Abstract

A suffix array is a method of reorganizing data into a form which facilitates

searching and exposes sections of a document that are repeated. Finding parallels is

important to both biblical scholars and music theorists. After an extensive overview

of suffix arrays and the creation algorithm employed, this thesis exploits the data

structure’s properties to find parallel passages and to create cross-references. This

was done by analyzing two suffix arrays: one generated from the Koiné Greek New

Testament and another created from a fugue written by J. S. Bach. This thesis

proves that the data structure itself is extremely useful for analyzing both ancient

writings and western music by demonstrating one way to produce cross-references

in an extraordinarily efficient manner. In addition to analyzing data, this research

could serve as a foundation for computer assisted machine translation and music

information retrieval.

ii

Contents

Abstract ii

Contents iii

Introduction 1

1 An Overview of Suffix Arrays 6

1.1 Background . 7

1.2 Structure of the Suffix Array & Suffix Tree 8

1.3 Basic Uses for Suffix Arrays . 12

1.3.1 General Searching . 12

1.3.2 The Burrows and Wheeler Transform 13

1.3.3 The Longest Common Prefix 19

1.4 Alternatives to Suffix Arrays . 21

1.4.1 Basic String Matching . 22

1.4.2 Suffix Trees . 22

1.4.3 Inverted Files . 23

1.5 Hot Topics about Suffix Arrays . 25

1.5.1 Constructing a Suffix Array 26

1.5.2 Searching a Suffix Array . 27

1.5.3 Compressing a Suffix Array 28

1.5.4 Cache Aware Programming 29

1.6 A Survey of Surveys . 30

iii

1.7 An End of an Overview . 31

2 Two Suffix Array Algorithms 32

2.1 Ko and Alru’s O(n) Construction Algorithm 33

2.1.1 Step 1: Finding L-Type and S-Type Suffixes 33

2.1.2 Step 2: Sorting all the S-Type Suffixes 35

2.1.3 The Recursive Step . 39

2.1.4 Step 3: Sorting the L-Type Suffixes from the S-Type Data . . 42

2.2 Approximate String Matching . 46

3 Suffix Arrays and Koiné Greek 51

3.1 Background . 52

3.1.1 Description of the Format . 53

3.1.2 Textual Limitations . 54

3.2 Finding Phrases in the Greek New Testament 55

3.2.1 Methodology . 56

3.2.2 About the Longest Common Prefix (LCP) 57

3.2.3 Program Performance . 58

3.2.4 Common Phrases in the Greek New Testament 59

3.2.5 Interesting Phrases in the Greek New Testament 64

3.3 Cross-Referencing the Greek New Testament 73

3.3.1 What the Algorithm Does . 73

3.3.2 How the Algorithm Works . 74

3.3.3 Whether the Algorithm Performed 80

3.4 Potential for Further Research . 84

4 Suffix Arrays and Music 90

4.1 Background . 91

4.1.1 Western Music Searches . 91

4.1.2 Storing and Typesetting Sheet Music 92

4.1.3 Introducing the Fugue . 95

iv

4.2 Analyzing the Fugue . 100

4.2.1 Finding the Subject in the Suffix Array 100

4.2.2 Three Other Interesting Passages 104

4.3 Potential for Further Research . 105

Conclusion 109

Bibliography 112

v

Introduction

Studying a suffix array is a little bit like studying a brick. One doesn’t normally

study a brick because it is not very interesting in and of itself. Everyone knows

that a brick is made of baked clay, that it is relatively heavy, and that it can serve

as a good paperweight as long as one does not care about scratching the table. A

structural engineer would also know that a brick has a compression strength but a

low tensile strength. Unfortunately, these properties are generally far less exciting

than the houses which can be constructed with bricks, but a better brick will produce

a better house. Therefore, it is very useful to study the properties of a brick because

the properties of these will influence the properties of a houses.

A suffix array is basically a document which is transformed into something en-

tirely different. This metamorphosis is the basis of many searching, translating, and

compression algorithms. It is very useful to study the raw information created by a

suffix array for many of the same reasons it is useful to study the structural proper-

ties of a brick. It can also be about as interesting as studying a brick (except that

computer scientists are usually intrigued by the one whereas structural engineers

are typically interested in the other). It is possible to create faster cross-referencing

systems, better translation software and faster search software by analyzing the

simplest forms of a suffix array. This thesis provides such an analysis.

This thesis is divided into four chapters. In Chapter 1 on page 6, I look at

a broad overview of suffix arrays. This is a little like looking at the history of a

brick. Although the language is not extremely technical, the intended audience is

people who work with computers. In this chapter, I first look at various uses of the

suffix array in Section 1.3. I also look at some alternatives to suffix arrays such as

the inverted file structure in Section 1.4. Finally, in Section 1.5, I discuss various

common topics in the literature surrounding suffix arrays such as their construction,

compression, and use in search systems.

In Chapter 2 on page 32, I study two particularly interesting algorithms related

to suffix arrays. This is a little like looking at how a brick is formed and baked. The

most intricate part is where I describe Ko and Alru’s suffix array construction algo-

2

rithm in Section 2.1. I have tried to write this section in a manner which is simpler

than Ko and Alru’s original paper [21]. Nonetheless, I suspect that it will probably

be extremely difficult to understand without a substantial background in mathe-

matics or computer science.1 There is one extremely important thing about this

algorithm which is the one thing I hope any biblical scholars or musicians who are

interested in my thesis will understand (after which they may skip the chapter en-

tirely). This important point is that this construction algorithm works in O(n) time

and O(n) space. This means that it will take twice as much time and twice as much

space to process twice as much data. Although this may seem logical enough, com-

puter scientists know that some algorithms can work at a much slower speeds such

as O(n2), which means that it takes four times as long to process twice the data. An

example of this type of algorithm is given in Section 3.3.2. Having an algorithm that

works in O(n) time and space makes processing extremely large documents fairly

easily, but having one that works in O(n2) time could make processing very large

documents prohibitively difficult. This suffix array construction algorithm which I

have described in Chapter 2 and implemented in Chapters 3 and 4 is a relatively fast

O(n) algorithm. I also explain how the suffix array structure could be augmented to

facilitate a fast approximate string matching routine in Section 2.2. The technique

suggested in this section would be extremely expensive with current technology for

very large sets of data, but it would work very well for smaller documents such as

the Koiné Greek New Testament.

In Chapter 3 on page 51, I study a suffix array generated from one relatively

popular Koiné Greek document: the New Testament. This is a little like studying

the characteristics of a brick when it is used to build houses. I have tried to write

chapter 3 of the thesis in a way that both computer scientists and biblical scholars

can understand because my research is relevant to either field. But because there is a

significant amount of jargon in both disciplines, this has been moderately difficult. I

begin by showing many of the things a suffix array will bring to the surface in its raw

1I had a fair amount of difficulty understanding it myself when I translated the algorithm from
English into C.

3

form in Section 3.2.5. Later, I show how a suffix array can be used in combination

with a simple fuzzy-logic algorithm to find cross-references in Section 3.3. Processing

the entire Greek New Testament took just 3.5 seconds to generate the suffix array

and 10 seconds to create cross-references on my relatively slow 1.2GHz computer.

And because the construction algorithm has a O(n) construction time, it is also

quite fast to process much larger documents. Although a suffix array is somewhat

useful and cross-references are especially useful for their own sake, I also explain how

this research could be expanded to cross-reference other Koiné Greek documents and

create a computer assisted translation system in Section 3.4.

In Chapter 4 on page 90, I study a suffix array generated from a particularly

interesting type of music: a Bach fugue. This is a little like studying how a brick

can be used to build bridges. A brick is not normally the type of material one uses

to build bridges just as a suffix array is not normally the way one would search

through or analyze music, but just as arch bridges made of bricks can serve as

functional structures, so also suffix arrays can serve as a wonderful way to index

music. I have tried to write chapter 4 in a way which is interesting to both computer

scientists and musicians because the information presented is relevant to both fields.

Unfortunately, it is prohibitively difficult to write it in such a way that it is fully

understandable for people who cannot read music at all, however I have explained

or avoided the use of technical jargon wherever possible.

A suffix array can be used as a building block to accomplish many things. In

this thesis, I not only look at the suffix array, but I look at its application to Koiné

Greek and music. Chapters 1 and 2 are designed to teach concepts, whereas Chap-

ters 3 and 4 were written to prove them. Although the data presented here is useful

in and of itself, it is my hope that the information will be used to create more intri-

cate programs in both disciplines. The simplest way to continue my research into

using suffix arrays with Koiné Greek would be using the same mechanisms to create

a cross-references for a larger corpus than just the New Testament (pages 73–84).

The most impressive way to expand this research would be to create a computer as-

4

sisted translation system designed specifically to translate the Greek New Testament

into any arbitrary language as discussed on page 88. The research I have done by

applying a suffix array to music is even more basic than the Koiné Greek research.

As discussed on page 105, the simplest way to expand this research would be to

use a different format for sheet music that would allow the use of a larger corpus.

If such a corpus were analyzed using a suffix array, this database could easily be

used to search for excerpts or count precisely how many times a particular excerpt

is used in a relatively large body of music. Neither of these operations would be

computationally expensive, so a single web-server with this type of database could

serve hundreds or perhaps thousands of users.

This seems to be as good a time as any to remind the reader that both links and

an index have been created in the pdf version of this thesis. If you’re reading on

paper, feel free to request an electronic version by e-mailing nathan at thru dot st.

With this file it is possible to click on any reference in the contents or elsewhere,

and browse through the contents in a side pane of a pdf viewer. The author is also

quite happy to answer other inquiries.

5

Chapter 1

An Overview of Suffix Arrays

1.1 Background

This chapter is a survey of several issues related to suffix arrays. My particular

interest is in using suffix arrays to search for n-grams (phrases) in statistical machine

translation and cross-referencing systems, but this bias is fairly subtle until the

introduction of my proposed Approximate Searching Algorithm in Section 2.2. The

reader may also notice a greater emphasis on large alphabets than normal, and this is

because I have used an alphabet of several thousand characters in Chapters 3 and 4.

This first chapter is intended to be a reference for suffix arrays, an overview of all the

major issues, and an illustration of the most interesting algorithms. The illustrations

border on being too verbose rather than too terse because they are designed to allow

the reader to understood how an algorithm works intuitively rather than formally.

This thesis uses several conventions related to variable names and definitions be-

cause there is actually a remarkable similarity between the choice of names and sym-

bols in all the literature. The most important are as follows. The set of all the char-

acters in the alphabet is defined by Σ. In the traditional case, Σ = { a, b, c, . . . }
but there are also several common variations. The alphabet may be case and punc-

tuation insensitive, or something else entirely, such as Σ = { A, C, G, T } for a

DNA sequence. Many algorithms only work if the size of the alphabet, represented

by |Σ|, is relatively small. A special character, $, is usually defined as something

that is lexicographically smaller than any character in Σ. The $ is similar to the

null character in a null terminating string. A suffix array T is an array of alphabet

characters, and for every index i, T [i] ⊆ Σ. The string ends with a $ and its

length n = |T |. Thus, a O(n) construction algorithm varies asymptotically with

the length of the input string. P is a string that is a pattern to search for in T

where P [i] ⊆ Σ for each index i in P and m = |P |. Therefore a O(m) search

algorithm varies asymptotically with the length of the pattern searched regardless

of the size of n. Finally, the suffix array itself is denoted by S. These variable names

seemed to be used even in older suffix tree literature, so I suspect it has become a

de facto standard.

7

The chapter proceeds as follows. Section 1.2 serves as a definition: it describes

what a suffix array is and what it looks like. Section 1.3 reviews common uses

for suffix arrays. Section 1.4 describes other algorithms that perform these same

functions. Section 1.5 is the highlight of the chapter. It studies the three most com-

mon computational problems concerning Suffix Arrays: creating new arrays 1.5.1,

searching through arrays 1.5.2, compressing arrays 1.5.3, and cache aware program-

ing (though this has been prodominately ignored in the literature) 1.5.4. Finally,

Section 1.6 critiques several papers which are also surveys of other papers. Each of

the papers briefly serveyed in this section is an excellent reference.

1.2 Structure of the Suffix Array & Suffix Tree

Edward Fredkin introduced the idea of a “trie” in 1960 [13]. This structure is a

type of tree, but he coined the word “trie” because it was designed primarily for

yabadabadoo$

d

a
oo$

o$

$

bad
abadoo$

o

oo$

abadoo$

oo$
bad

abadoo$

$

d
oo$

abadoo$

yabadabadoo$

d

a
oo$

o$

$

bad
abadoo$

o

oo$

abadoo$

oo$
bad

abadoo$

d
oo$

abadoo$

$

Figure 1.1: The suffix tree for “yabadabadoo$”. The right image shows repeated
subtrees in a darker colour.

8

retrieval.1 Later, the idea of a suffix tree (often called a suffix trie) was developed.

As the name implies, a suffix tree is a trie designed to retrieve all of the suffixes in a

string. A suffix tree for T =“yabadabadoo$” is represented in Figure 1.1. The root

node is on the left side, and the nodes that are greyed are repeated—therefore the

parent nodes may use a pointer to the previously defined sub-tree. This allows the

Suffix Tree to be stored in O(n log n) space.

Let’s try to retrieve the suffix P =“badabadoo$” from the suffix tree represented

in Figure 1.1. From the root node, find the node that begins with “b”.2 Because this

node contains “bad”, we verify the first three characters P and continue searching for

“abadoo$”, starting with the first character. This search can be performed within

O(m) time or technically O(m |Σ|) time (depending on the implementation). It is

easy to see that the search phrase, P , doesn’t have to be a suffix. If P=“badab”

then the same procedure would return a find after all the characters in P are gone.

It is also possible to detect a non-existent string by returning null after the first

character is not found because every substring in T is stored in the suffix array.

Suffix Arrays

The basic structure of a suffix array is shown in Figure 1.2. They serve a similar

function to suffix trees because both structures allow fast searching. In fact, it is

possible to construct a suffix array from a suffix tree, and it is possible to use a

suffix array as a suffix tree by creating additional data structures [1]. The primary

advantage of the suffix arrays over suffix trees is that they can be represented inO(n)

space instead ofO(n log n), and almost all the data structures which augment a suffix

array for various algorithms—including those which provide suffix tree emulation—

may also be represented in O(n) space. The reason for the difference is that a suffix

1The pronunciation of “trie” is traditionally the same as the pronunciation of “tree” due to its
etymology, however some people pronounce it “try” to create a distinction

2The parent node may connected to its children in several ways. If the children are stored as a
linked list, a search for a child can be done in O(|Σ|) time. If, however, a balanced binary tree or
radix sort is used, it would take O(log |Σ|) or O(1) time respectively. The size of the alphabet is
usually the primary factor to consider.

9

y a b d o $

yabadabadoo$

a a b da o

0 1 2 3 4 5 6 7 8 9 10 11

y a b d o $

yabadabadoo$

a a b da o

11 1 5 3 7 2 6 4 8 10 9 0

abadabadoo$

abadoo$

adabadoo$

adoo$

badabadoo$

badoo$

dabadoo$

doo$

o$

oo$

yabadabadoo$

$

0

1

2

3

4

5

6

7

8

9

10

11

$

abadabadoo$

abadoo$

adabadoo$

adoo$

badabadoo$

badoo$

dabadoo$

doo$

o$

oo$

yabadabadoo$

11

1

5

3

7

2

6

4

8

10

9

0

Figure 1.2: Left: An unsorted array of suffixes for “yabadabadoo$”. Right: The
properly sorted suffix array. Top: The pointers for each corresponding data struc-
ture. Bottom: The list of pointers in a data structure next to the string it derefer-
ences.

10

array never repeats any characters in the text which can be seen by comparing

Figures 1.1 and 1.2.

A diagram of a suffix array for “yabadabadoo$” is shown in Figure 1.2. The

top two pictures show the suffix array data structure, and the bottom two show

the set of strings represented by this data structure. Common knowledge of the C

programming language will help illustrate the concept (see Figure 1.3).

#include<stdio.h>

int main()

{

const char string1[13]="yabadabadoo$";

char *string2;

string2=&string1[4];

printf("%s\n",&string1);

printf("%s\n",string2);

}

Output:

yabadabadoo$

dabadoo$

Figure 1.3: A program to illustrate the concept of a suffix string.

In C, a string is typically defined as const char string1[13]="yabadabadoo$"

or simply char *string2. String functions such as printf, expect to receive a pointer

to a string, so it’s quite possible to have many strings point to the same array of

characters. For example, if I deference the location string1[4] and set string2 to

this location, string2=&string1[4], then string2="dabadoo$" even though no

new memory is allocated. Thus, it is possible to have an array full of all the suffixes

to a string without the need to repeat any of the actual suffixes.

Now presume that there is an array of suffixes S, each pointing a different location

in a string. For each index i, define the array of suffixes as S[i] = i as shown on the

top left of Figure 1.2. Then the array will contain every possible suffix in order of

appearance as shown in the diagram. But it is only becomes a suffix array after it

11

is sorted lexicographically in the right side of that image.3 A binary search takes

O(log n) time and a string comparison takes O(min(m,n)) time where n and m are

the length of the two strings. Therefore, after the array is successfully sorted, it is

possible to search for a substring P of length m using in O(m log n) time. For other

examples of suffix arrays, the reader is also directed to Sections 3.2.1 and 4.2.1.

1.3 Basic Uses for Suffix Arrays

This section describes what suffix arrays are used for. Although suffix arrays are fre-

quently used for searches, there are many common uses. The Burrows and Wheeler

Transform is explained in some detail (Section 1.3.2), but the algorithms associated

with constructing and searching through arrays are examined in Section 1.5. There

are also several new potential uses described in Chapters 3 and 4 of this thesis.

1.3.1 General Searching

A suffix array is usually used for searching for a pattern P in a Suffix Array A to see

if the pattern occurs, how many times it occurs, and where it occurs. Most people

who use computers are familiar with searching for things; they look for words in file

or on the web. It would be possible, for example, to search through an encyclopedia

on a CD using a suffix array. Although suffix arrays can be used to search for text,

the costs associated with a suffix array are often too high in the general case—

especially with dynamic content. One of the reasons it is effective to search through

the Koiné Greek New Testament with a suffix array is that the content never changes

(see Chapter 3). However suffix arrays are particularly useful for searching for long

patterns.

The suffix array shines whenever many queries have to made on the same data.

This type of query is often used in Statistical Machine Translation (SMT), where

3Note that $ is the smallest character, therefore the string “o$”<“oo$” even though all the other
characters are the same. Because every suffix string has a different length ending in this unique
character, no two suffix strings can be equal. This different from the rotating model proposed by
Burrows and Wheeler in [4]. (See Section 1.3.2)

12

large texts of Parallel Corpora are search to find possible translations. A Parallel

Corpus is a corpus of documents which have been translated from one language into

another language. For example the Hansard (parliamentary transcripts) in Ottawa

are translated into both English and French. As with any Parallel Corpus, this

database can be mined to find the way words and phrases have been translated in

the past. Research has shown that searching for longer phrases instead of shorter

words generally produces better translations [22], and a suffix array is an extremely

good structure for this type of query, because many searches for long phrases can

be made quickly [5].

Natural Language is by no means the only data which can be searched. In fact,

suffix arrays are particularly useful for searching through DNA sequences because

the content of a DNA strand is long and static. One of the advantages of suffix

arrays is that search queries don’t have to be broken up into words to be indexed.

DNA is a complicated language. It has an alphabet of only four characters, but not

one of these characters is a space. The suffix array seems to be particularly good at

searching for long DNA sequences which occur infrequently [42]. It is also possible

to search for a tune in music, and this will be explored in Chapter 4.

Sometimes only the number of times a pattern occurs is needed, and this question

can be answered extremely quickly by using a suffix array. For more information on

implementing a search and count algorithm, see Section 1.5.2.

1.3.2 The Burrows and Wheeler Transform

One of the most interesting uses for the suffix array is the Burrows and Wheeler

Transform (BWT); they published the transform in 1994 as “A Block-sorting Loss-

less Data Compression Algorithm” [4]. The most common program that uses this

algorithm is bzip2. The ironic thing is that a BWT really doesn’t compress anything

at all, it simply converts data into something that’s the same size, but the resulting

data is far more compressible. Performing the first steps of a BWT is basically

identical to sorting an array of suffixes to create a suffix array.

13

yabadabadoo$

$

y

a

b

a

d

a

b

a

d

o

o

y

a

a

d

a

b

a

d

o

o

$

b

1234567

1

2

3

4

5

6

7

2

3

4

5

6

7

1

1

2

3

4

5

6

7

2

3

4

5

6

7

1

1234567
o

y

d

b

b

a

a

a

a

o

d

$

$yabadabado

abadabadoo$

abadoo$yaba

adabadoo$ya

adoo$yabada

badabadoo$y

badoo$yabad

dabadoo$yab

doo$yabadab

o$yabadabad

oo$yabadaba

yabadabadoo

Figure 1.4: Left: A string can be regenerated if every set of two successive characters
is known. Centre: This property holds even if the order of the sets of the sets of
characters is scrambled. Right: The data from a BWT—each character previous to
an entry in a suffix array is extracted.

Text from a BWT is very similar to a linked list. For example, consider the two

columns of text shown in Figure 1.4. In each example in the figure, the left column

represents a character, and the right column represents the next character in the

string. The two columns can act as both data and pointers, and this is easiest to

see if there are no repeated characters, such as the string “1234567”. Starting at

the top of the left column of this string (see the centre of Figure 1.4), we find a 7.

The corresponding character at the top of the right column is the next character

in the string, a 1. Although this is the character we wish to store to reconstruct

a string, it also serves as a pointer. The 1 in the left column is the next digit in

the linked list. Another way of thinking about it is that by linking every pair of

characters in the string, (starting with 71, then 12, then 23, etc.) we can reconstruct

the entire string. Thes is because the second character of each pair is always the

first character of the next pair. Note that each character must be unique (for now—

14

eventually we’ll convert a character into sets of characters), and a pair of characters

takes twice as much space as the string. In this simplified case, it’s easy to see that

it’s possible to reconstruct “1234567” even if the order of the pairs of characters is

scrambled (see Figure 1.4). This is very similar to a linked list; regardless of where

a particular node is stored in memory, it’s possible to traverse the entire list as long

as the pointer to the next node is valid.

Now consider the special case of a suffix array, such as the suffix array for

“yabadabadoo$” shown in Figure 1.4. In this picture, the sorted order of each string

is shown in the right column, and the character immediately preceding each entry

is shown in the left column. The string is circular both for historical reasons and

clarity.4 The most amazing and innovative thing about the BWT is that given the

string “oydbbaaaaod$” found in the left column, the entire string “yabadabadoo$”

can be reconstructed!

This is understood best by working through an example, such as inverse BWT

depicted in Figure 1.5. For each frame, the same encoded string is shown in the left

column, and the next character is shown in the right column. The data in the left

column was generated in the forward BWT described in the previous paragraph.

This is the data we need to decode. The right column can be reconstructed using

only the data in the left column by a simple counting sort. This works because the

left column was generated by finding the previous character in a suffix array, and

the first character for each string in a suffix array will always be equal to or greater

than the first character in the previous suffix because a suffix array is sorted by

definition. As the second column is being generated, the $ terminating character

is encountered (it is not necessarily the last character in the compressed string),

and this is used as a starting point for the rest of the process. (Alternatively, the

position of the $ could be stored explicitly so that this special character wouldn’t

4When the BWT was introduced in [4], there was no special terminating character that never
occurred anywhere else in the array. Instead, the data was treated in a manner similar to circular
buffer. With a terminating character that only occurs once in the data, a cyclical buffer will be
sorted in the same order as an acyclical buffer. This is extremely helpful in special cases, where a
string will repeat indefinitely. If one sorted “abcabcabc” cyclically with no terminating character,
special care must be taken to make sure string comparisons don’t loop forever!

15

1413

1211109

8765

4321

This
is

wrong!

Figure 1.5: An example of regenerating “yabadabadoo$” from its scrambled form.

16

need to be part of the alphabet.)

After $ is found, the next character will be the first character in the right column

which also will be the first character in the string (see Frame 1 in Figure 1.5).

Note that this structure is very much like the linked-list described previously. By

constructing the right column, we have generated a set of character pairs from a

set of characters. The first character in the string is “y”. Now we use this as a

pointer to find the “y” in the left column (Frame 2). This corresponds to the next

character, “a” giving us a string of “ya” (Frame 3). This process repeats effortlessly

until frame 6, where “yabab” is generated instead of the correct “yabad”. This error

is caused by the fact that the right column is a single character instead of a true

pointer, and almost every compressible string contains repeated characters. (See

Section 1.5.3 for an intriguing exception.)

The solution is simple, as seen in Frame 7, each character must be counted, and

the first “a” in the left column corresponds to the first “a” in the right column,

the second to the second, etc. However the reason this works is not particularly

simple. Looking back at the suffix array for “yabadabadoo$” in Figure 1.4, one can

see that the order of characters in the encoded text is based on sorting the entire

string rather than simply sorting the left-most character we use for decoding the

string. For example, the string “abadoo$” appears before “adoo$” in the list even

though the first characters in both strings are both “a”. This is because the rest

of the string, “badoo$”<“doo$”. There are several “a”s in the left column, but

the one corresponding to “badoo$” occurs before the one corresponding to “doo$”

because these suffixes are also sorted. One can also look at this backwards. There

are two suffix strings in the right column preceded by an “d” in the left column. It

would be possible to remove all the rows of strings that are not preceded by a “d”

leaving only “abadoo$” and “oo$”. It would be possible to add the first character

“d” to the two strings (perhaps by reading across both columns), and the suffixes

“dabadoo$” and “doo$” are created. Now, by looking in the right column of the

entire suffix array, you will find that both of these suffixes already exist. In fact,

17

each “d” in the left column has been encoded in the same order in the right column,

which is why this principle works. This is why it’s possible to extract the data,

and use the single characters as pointers even when they are not unique. Using this

principle, it is possible to follow from Frame 7 in Figure 1.5 until the entire string

is reconstructed when the last $ is reached in Frame 14. Yabadabadoo!

Compression using the BWT

The most unusual thing about the BWT compression mechanism is that the trans-

form doesn’t actually compress the text! Instead, a stream of the same size is gen-

erated, and this stream is more compressible. By looking at Burrows and Wheeler’s

original example in Figure 1.6, you can see that many of the sentences using the

final
char sorted rotations
(L)
a n to decompress. It achieves compression
o n to perform only comparisons to a depth
o n transformation} This section describes
o n transformation} We use the example and
o n treats the right-hand side as the most
a n tree for each 16 kbyte input block, enc
a n tree in the output stream, then encodes
i n turn, set $L[i]$ to be the
i n turn, set $R[i]$ to the
o n unusual data. Like the algorithm of Man
a n use a single set of probabilities table
e n using the positions of the suffixes in
i n value at a given point in the vector $R
e n we present modifications that improve t
e n when the block size is quite large. Ho
i n which codes that have not been seen in
i n with ch appear in the {\em same order
i n with ch. In our exam
o n with Huffman or arithmetic coding. Bri
o n with figures given by Bell˜\cite{bell}.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

6

Character Alphabet Encoded
a aeiou 1
o aeiou 4
o oaeiu 1
o oaeiu 1
o oaeiu 1
a oaeiu 2
a aoeiu 1
i aoeiu 4
i iaoeu 1
o iaoeu 3
a oiaeu 3
e aoieu 4
i eaoiu 4
e ieaou 2
e eiaou 1
i eiaou 2
i ieaou 1
i ieaou 1
o ieaou 4
o oieau 1

In: aooooaaiioaeieeiiioo
Out: 14111214133442121141

Frequencies:
a: 20% 1: 50%
e: 15% 2: 15%
i: 30% 3: 10%
o: 35% 4: 25%
u: 0% 5: 0%

Figure 1.6: Left:This example is quoted directly from Burrows and Wheeler’s paper
paper [4]. It depicts the result of performing a BWT on their own paper. It is also
the only internal evidence that their paper was produced using LATEX. Right: This
chart shows how the text on the left would be encoded using a move-to-front buffer
with an alphabet of “aeiou”.

word “on” and “in” occur close to each other in the text. It’s also possible to see

18

that any word ending in an “n” has a vowel as the second last character. After the

transform, similar phrases occur together, and so the probability of one character

being identical to the previous character increases greatly. It would be very simple

to compress this is using Run Length Encoding, but usually a different mechanism

is employed.

In order to exploit the repetition in data, a move-to-front buffer is often used.

For example, let’s say we have an alphabet of only vowels i.e. Σ = {a, e, i, o, u} and

each letter is represented by it’s position in Σ, so a = 1, e = 2, etc. Let us write

the sequence “aooooaaiioaeieeiiioo” from Figure 1.6 using a move-to-front buffer.

The first character, an “a”, would be written as a 1, and because it’s already in the

beginning of the alphabet it would remain in position 1. The second character is an

“o”. It is stored as a 4 because at the time it’s written, it’s in the fourth position

of Σ. Before it’s written, Σ = {a, e, i, o, u}, but after it’s written, Σ = {o, a, e, i, u}
because the letter “o” is moved to the front of the buffer, and every other letter

is moved back one position. The string can easily be reconstructed using the same

move to front principal because the alphabet is never changed until after a character

is written. In fact, in Figure 1.6, the entire string may be encoded or decoded

using the table. The frequency table reveals that half of the time the output string

contains a 1 because half of the time the input repeats. Once again, the output of

the transformation is the same size of the input. However this resulting string can be

encoded using Huffman or arithmetic encoding extremely effectively because the real

input alphabet has 256 characters, not just the vowels, and yet the process would

still result in about half the characters in this sequence being a “1”, meaning these

characters could be encoded using only one bit! The implementation of arithmetic

encoding is beyond the scope of this thesis.

1.3.3 The Longest Common Prefix

An auxiliary array for the Longest Common Prefix (LCP) is often used to search for

patterns in an array of text. An example of how this data can be used to interpret

19

a suffix array constructed from Koiné Greek is given in Section 3.2.2. The LCP

structure is also be used as one part of a system to emulate a suffix tree using

a Suffix Array [1, 9]. It is possible to create the LCP array in O(n) time [18].

This array is also a byproduct of some suffix array creation algorithms [29]. The

LCP has a simple structure, shown in Figure 1.7. Each index of the LCP contains

the number of characters which are identical to the previous suffix in the suffix

array. For example, referring to Figure 1.7, the prefix “bad” is contained in both

“badabadadoo$” and “badadoo”, so the LCP for “badadoo$” is 3. The LCP for the

suffix “badabadadoo$” is 0 because its prefix shares no characters in common with

“adoo$”.

$

abadabadoo$

abadoo$

adabadoo$

adoo$

badabadoo$

badoo$

dabadoo$

doo$

o$

oo$

yabadabadoo$

0

0

4

3

2

0

3

0

1

0

2

0

LCP Suffix

Figure 1.7: The Longest Common Prefix for each line in the suffix array of
“yabadabadoo$”.

It is more difficult create a suffix array of a text with high LCP’s because many

of the suffixes require many compare operations to resolve potential conflicts. Some

20

creation algorithms tolerate this better than others. The fastest creation mechanism

has safeguards to detect these special cases [29, 24]. The mean LCP of some texts is

very high: human chromosome 22 has a mean LCP of almost 2000 characters [29].

Data with high LCP’s are often the most interesting part of the array. Yamamoto

and Church used the LCP structure to find all of the “interesting” substrings in

the Wall Street Journal and a Japanese corpus [38]. The suffix array and LCP are

used to find such phrases, and then each phrase is tested based on other statistical

measures (mutual information and residual inverse document frequency). They

found interesting results. For phrases containing “the” they found “the up side”,

“the will of”, “the saying goes”. These principles could be applied to finding patterns

in musical compositions, and this will be explored in Section 4.1.1.

1.4 Alternatives to Suffix Arrays

Although suffix arrays have many advantages, they also have disadvantages. They

are able to ignore spaces and search starting in the middle of words, which is terrific

for analyzing DNA, but not necessarily the best thing for text. It is possible to

convert every character to lower case, and every punctuation mark between words

to a space in order to create a more practical, case insensitive search or perform even

more preprosessing for approximate string searches (See Section 2.2), but when one

searches for a “red rose” they usually don’t want the references to “bored roseanne”

that a suffix array will return. However this limitation can be overcome by using

a large alphabet where each letter represents a word as explained in Section 3.1.1.

Another restriction, the random access pattern which makes suffix arrays unsuitable

for today’s secondary storage technology, may disappear in time if computers begin

to run on flash memory instead of traditional hard disks. Professional photogra-

phers no longer use large compact flash micro-drives because Flash technology has

improved, so one can imagine a day when the hard drive becomes obsolete.

21

1.4.1 Basic String Matching

One cannot completely ignore the basic algorithms for exact string matching, similar

to that used by grep. The amount of time it takes to construct a suffix array makes it

inefficient to construct the array to do a small number of queries. The simplest string

matching algorithm runs in O(nm) time, and simply compares every character in

the search pattern to every character in the text. However the Knuth Morris Pratt

(KMP) algorithm uses an array to ensure that every substring of a pattern can be

reconsidered if a match fails, and this algorithm runs in O(n+m) time [20].5 With

some of the advanced suffix array structures presented in Section 1.5, it would also

be possible to create a suffix array and perform a search all in O(n + m) time, but

it would take several dozen different searches in the same text before this actually

proved more efficient. Perhaps it would be appropriate for a pdf viewer to create

a suffix array in the background as a new file is loaded in anticipation of a user’s

search, but it would be inefficient for a file editor to do this. Because the KMP

algorithm works on a stream of characters, it can easily be used to search efficiently

for relatively small patterns in compressed documents or documents which are too

large to fit in RAM. This is the simplest type of searching algorithm and it’s often

appropriate to use it.

1.4.2 Suffix Trees

Edward Fredkin introduced the idea of a suffix tree as mentioned in Section 1.2 [13].

They occupy O(n logm) space, but can perform O(m |Σ|) or O(m log |Σ|) searches

depending on their implementation. The first O(n) suffix tree construction algo-

rithm was found six years before the first suffix array construction algorithm—in

the intervening years one could construct a suffix array most efficiently by first con-

structing a suffix tree [35, 29]. It’s also possible to create dynamic suffix trees, which

makes them more attractive than suffix arrays for some applications [25].

5This is one of two documents which are found in all the literature, but I have not yet found a
copy myself.

22

However, it’s possible to merge two suffix arrays together in constant time [16].

By using this technique, it may be possible to have a small suffix tree-based work

corpus to handle data that changes frequently beside a more permanent suffix array

corpus. The suffix tree could then be appended to the suffix array either every night

or whenever the processor is idle, and then a new suffix tree could be created for

the next set of changes.

Because a suffix tree is a tree structure, it is sometimes necessary for some

of the structure to reside in secondary storage. By using Patricia tree’s (which are

closely related to suffix trees) in combination with suffix arrays, Ferragina and Grossi

were able to create an SB-tree data structure which works very well in practise [11].

Many of the best algorithms for searching suffix arrays described in Section 1.5.2 are

actually emulating a suffix tree [9, 1]. Presuming the data is static, it is usually more

efficient to use a suffix array to emulate a suffix tree. Another possible exception

would be imprecise string queries. In 1993, Ukkonen proposed three methods for

augmenting suffix arrays to allow searching for strings that are close to a particular

pattern [36]. Although Ukkonen suggested changing his algorithm to use suffix

arrays, I don’t think this has been done. However, I propose an entirely different

approach in Section 2.2. Although the suffix array is Superior to a suffix tree in many

ways—especially since the former can emulate the latter—the suffix tree remains

more useful in some circumstances.

1.4.3 Inverted Files

No overview of information retrieval would be complete without mentioning the

inverted file (sometimes called an inverted index). It is a broad term for a database

of search terms (usually words), and each search term is linked to a specific file.

Often, the database may also store information about the precise location of each

word instead of simply the file location, and this is the type of index which is closest

to the suffix array. This is the type of system that almost all web search engines use.

Signature files are very similar, but instead of storing a particular search term, they

23

store the hash of a search term. If two words have the same hash, they share the

same database entry. False positives are filtered out later. This structure has proved

to be both larger and slower than the inverted file [42]. Perhaps the most recent and

comprehensive overview of Inverted files was created two years ago by Zobel and

Moffat [41]. In it they point out many of the virtues of Inverted Files and a few of

the deficiencies of suffix arrays.6 Inverted files may become several times larger than

the text they index, but it is possible to created a compressed inverted file. One

such datastructure uses wavelet tree’s to store the inverted file along with enough

auxiliary data to store the data itself [3]. The paper describing this data structure

has one of the best comparisons between a Huffman tree and a wavelet tree, and it

shows why the latter is more efficient; the compression techniques presented could

apply to suffix arrays as well.

Inverted files use many different mechanisms to actually store the database of

terms. These terms may be individual words or phrases, and they may also correct

spelling errors or wild-card searches. Phrases are often restricted to two words, and

then a three word phrase is found by searching for the intersection of words 1 & 2

with words 2 & 3. Hash tables or tries may be used to store the indexes. A bloom

filter may be used to see if a word exists in the database or not to avoid checking a

disk database for a term which doesn’t occur. A bloom filter will occasionally “lie”

and say that a term is in the database when it really is not, but when it says the

term is not in the database it is always truthful, so it will usually avoid a costly disk

read. The best set of compromises for a large inverted file which is stored primarily

on a disk is probably the burstsort [32]. This uses several structures together, and

it is also conscious of the processor cache (see Section 1.5.4).

The inverted file is not restricted only to applications which have definite word

boundaries. In order to search for other terms, an arbitrary word length is chosen

and strings of characters are generated from this. Then to search for a smaller term,

the index of all the artificial terms with a common substring are searched. For

6Although one of the deficiencies they site, the inability to search compressed data, was solved
several years earlier [12, 10]. See Section 1.5.3

24

example, to search for “red”, the six-character terms “paired”, “spared”, “shreds”,

and “redact” would all be searched. For terms longer than six characters, the

intersection of common substrings would be searched in the same manner as phrase

searches.

Most languages and language searches do have distinct word boundaries. But in

the domain of searching DNA which is often ascribed to the suffix array, inverted files

augmented using these techniques still perform extremely well [31]. This experiment

compared the compressed versions of both the inverted file and the suffix array, and

using uncompressed versions of these algorithms would probably lead to a different

outcome. Nonetheless, it shows that suffix arrays seem to be better at finding a

few long string matches than inverted files, and inverted files seem to be better and

finding a large number of small matches.7 In any case, the compressed suffix array

is far, far faster at finding the precise number of times a pattern occurs than the

inverted file.

1.5 Hot Topics about Suffix Arrays

A number of topics relating to suffix arrays are ubiquitous in the literature, and many

other topics are almost entirely ignored. The problem of constructing suffix arrays

seems to be particularly common, perhaps because it is the most difficult step in

compression schemes using the BWT. These few hot topics are certainly interesting

problems, but I suspect that the colder topics I have addressed in Chapters 3 and 4

of this thesis will also prove very interesting to the reader.

7I suspect this is due to the compression. An uncompressed suffix array should reveal a simple
list of pointers, and each one will correspond to a location in a similar manner to inverted files.

25

1.5.1 Constructing a Suffix Array

An Overview of Algorithms

There are many different algorithms which are used to sort suffix arrays. They are

described quite thoroughly in Pugilist, Smyth, and Turpins “Taxonomy of Suffix

Array Construction Algorithms” [29]. It is an extension of their earlier work which

only compared O(n) algorithms [30]. This thesis not only reviews most of the algo-

rithms, but also explains the chronology, relationship and origin of these techniques.

By classifying all these algorithms, it is a true taxonomy.

The two dominate strains of algorithms strains of construction algorithms, are

analogous to quicksort and heapsort. The algorithms similar to quick sort are ex-

tremely fast in practise, but have a very poor worst case. (If previously sorted data is

passed to quick sort, it’s normal O(n log n) complexity drops to O(n2).) The fastest

array construction algorithm in the experiments takes up to O(n2 log n) in the worst

case, though perhaps it’s real asymptotic complexity has yet to be proved [24]. The

algorithm is fast because it combines the best part of many other sorting techniques

with cache conscious programming and safeguards against the worst-case running

times. The first step is taken from an improved version of the O(n) algorithm we

will look at in Section 2.1. Subsequent steps use a version of quicksort that detects

a problem after 48 recursive calls and diverts to heapsort.

All of the O(n) algorithms work on the same principal. They sort a subset of

the array recursively, usually 1
2

to 2
3

of the elements, and find the position of the re-

maining elements using data from the sorted section. This recursion means that the

algorithms run in O
(
n
[
1 + (2

3
)1 + (2

3
)2 . . .

])
which is a geometric series that resolves

to O(3n) = O(n). Although this seems very attractive, the fastest O(n) algorithm

takes 2.5 times longer to run on average than the fastest algorithm O(n2 log n) al-

gorithm [29]. Nonetheless, this particular algorithm is interesting enough to merit

its description in Section 2.1.

It’s important to note that many of these algorithms use a bucket-sort mechanism

which is inappropriate for a large alphabet size. The fastest algorithm according

26

to experiments [29] is particularly troublesome. In their paper introducing the

algorithm, Maniscalco and Puglisi say, “Finally, it is important to note that this

sampling method is only suitable for applications in which |Σ|2 is a manageable

size—fortunately this is most often the case” [24]. There are exceptions where

the alphabet is unmanageable, such as the approximate string matching algorithm

described in Section 2.2 which works most efficiently if each word in a text is given

a number similar to a Chinese character set. A linear time algorithm introduced by

Na overcomes this limitation [26]. Although he requires o(n log |Σ|) bits of working

space to do this, the original text requires n log |Σ| bits of space to store—so this

restriction is no restriction at all.

One final algorithm which is particularly interesting runs in O(n log log n) time,

but it uses a distributed system to generate the array [19]. To create parallelisation,

it splits the array into multiple pieces and works out the middle. Tests show that

it speeds up the process almost optimally. Although the text itself isn’t distributed

through the network, it would be interesting to see if this algorithm could be adapted

from a distributed system to a multiprocessor system.

1.5.2 Searching a Suffix Array

When one searches for a pattern, they are generally looking for one of three things:

whether the pattern exists, how many times the pattern exists, or where the location

of each instance is. Suffix arrays can perform all of these searches very effectively.

In particular, suffix arrays are good at the counting problem because of the way the

indexes are stored. For example, referring back to Figure 1.2, one could search for

the string “bad” in “yabadabadoo$” by locating the 6th & 7th terms of the suffix

array which both begin with “bad”. All of the suffixes below the 6th index are

lexicographically less than “bad”, and all those after the 7th are greater. The fact

that there’s two items can be deduced from the fact that they occupy the spaces

6 . . . 7. This makes it possible to count every instance of “bad” or any other substring

in the same time it takes to make two searches.

27

The simplest method to search a suffix array is the same as the simplest method

to search any other array structure: the binary search. This allows a string to

be found in O(m log n) time where m represents the length of the pattern being

searched. Each subsequent string can be found in O(m log n + f) time where f

represents the number of matches. However there are several auxiliary structures

which may be used in order to reduce the search time to O(m) where time where

the alphabet size is constant.

The first of these algorithms was published by Abouelhoda, Ohlebusch and Kurtz

in 2002 [1]. They used various data structures, including the Longest Common Pre-

fix (see Figure 1.7), in order to emulate a suffix tree using a suffix array. With this

structure, a search could be made efficiently with a small alphabet in the O(m |Σ|)
time. This was extended by two papers which appeared in the same issue of the

Korean “Journal of KISS: computer systems and theory” [17, 39]. Both of these

algorithms use a rather novel datastructure that allows searches in just O(m log |Σ|)
time which drastically increases the search speed for large alphabets. The same

group of people produced an algorithm which augments the suffix array to emu-

late a suffix tree, but using a more advanced structure that still allows searches

in O(m log |Σ|) time [9]. For large alphabets, this is probably the most efficient

structure for searching so far.

1.5.3 Compressing a Suffix Array

Suffix tree compression was first introduced by Ferrangina and Manzini in 2000 [12,

10]. The remarkable thing about their compression scheme is this: not only is the

compressed index structure smaller than the original text, but the original text can

be decompressed using only the compressed index! In other words, the compressed

suffix tree can replace both the index and the original data.

Explaining these compression structures is beyond the scope of this thesis, but

an excellent overview of many self-indexing datastructures was recently created by

Navarro and Mäkinen [27]. An intuitive example of why the index is compressible

28

124 S.J. Puglisi, W.F. Smyth, and A. Turpin

11111111112222222222333333333344444444445555555555666666666
12345678901234567890123456789012345678901234567890123456789012345678
of all the saws I ever saw, I never saw a saw saw like that saw saws

Fig. 1. An example text used for illustration throughout the paper. Numbers indicate
the position of each character, for example a occurs at position 44.

An alternate technology, which we do not consider in this paper, is the Ziv-
Lempel index on q-grams published by Kärkkäinen [15].

2 Background

In this section we describe inverted files and compressed suffix arrays in turn.

2.1 Inverted Files

An inverted file is a data structure similar to a book index. Textual units of a
pre-determined form are extracted from T , for example words or q-grams, and
then the position of each occurrence of each unit is stored in an inverted list for
that pattern. For example, for the text in Figure 1, assuming a textual unit of a
3-gram, the inverted list for saw would be {12, 24, 37, 43, 47, 61, 65}; and for ver
{20, 33}. In order to locate the lists quickly, all of the textual units are stored in
a hash table with a pointer to the inverted list for that unit.

Without data compression, the size of the inverted index is obviously several
times larger than the text; for our q-gram units there is a 4 byte pointer per
text position, and some entries in a hash table, so a total space usage of at
least 4n bytes. When the lists are compressed, however, space savings accrue
that make inverted files the data structure of choice when searching for words
in English text [34]. The preferred method for compressing inverted lists is to
take differences between entries in the lists (so the list for saw would become
{12, 12, 13, 6, 4, 14, 4}) and then code these small integers with an appropriate
coding scheme [34]. In our experiments below we use the Simple-9 coding scheme
which, while not the best available, gives a good tradeoff between compression
levels and decoding speed [3].

The steps outlined in Figure 2 are followed to search for pattern P using an
inverted file. There are several nuances hidden by the pseudo code. Firstly, there
are various methods for computing a cover of P in Step 4. In the experiments
reported below we compute the set containing all the distinct substrings of P
of length q. This means we make m − q + 1 hits on the hash table but we
are guarantee to have the shortest inverted list at Step 8. As an alternative
one could use a simple greedy left-to-right match, taking the q-grams P [1 . . . q],
P [q + 1 . . . 2q], and so on, with the final q-gram being P [m− q + 1 . . .m].

The second nuance is the early termination of the loop that intersects the
inverted lists for each q-gram to generate the list of candidate matches C (Step 9).
It was observed by Zobel et al. [35] that it is often beneficial to stop intersecting
lists and go straight to the text when the length of candidates fell below some

126 S.J. Puglisi, W.F. Smyth, and A. Turpin

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .50 51 52 53 54 55 56 57 58 . . .68 69
S[i] 69 16 28 40 3 18 50 30 36 46 42 60 23 64 11 55 7 27 . . .15 37 47 43 61 24 65 12 59 . . .67 14

Fig. 3. Suffix array S for the example string in Figure 1. The underlined regions are
the same run of values but offset by one.

indexing inverted files [9,24]. It may be possible that those ideas could be adapted
for the q-gram case, though we do not compress the text for the inverted file
experiments reported in this work.

2.2 Compressed Suffix Arrays

The suffix array of text T is defined as an array S containing a permutation
of the integers 1 . . . n such that the suffix T [S[i] . . . n] is lexicographically not
larger than the suffix T [S[i+ 1] . . . n]. In effect, S is a sorted list of pointers to
every suffix of T . Figure 3 shows portions of S built for the example text in
Figure 1. Note that it is convenient for suffix array algorithms to have a special
terminating character $ which is smaller than all other characters added to the
end of T , hence the first entry in S in the figure is 69, the position of $ in T .
The next 16 entries all point to suffixes beginning with a space, with T [S[18]]
being the comma. The middle section shown, S[51 . . . 57] shows the pointers to
suffixes beginning with saw.

In order to use S to search for P we can employ the algorithm of Manber
and Myers [20], which is a simple binary search for the suffix beginning with
the string lexicographically less than P , and the suffix beginning with the string
lexicographically greater then P . For example, in Figure 3, if the pattern was
P = saw, we would binary search to positions 51 and 57 in S which are the
boundaries of the region of pointers to suffixes beginning with saw. For each
step of the binary search we may have to do m comparisons, so the total time
is O(m log n). If an extra array of size 4n bytes, called the LCP array (longest
common prefix), is stored, then search times can be reduced to O(m + logn).
By enhancing the suffix array with various other auxiliary arrays Abouelhoda
et al., [1] and Sim et al.,[29] show how to improve search time to O(m) for texts
with constant sized alphabets.

The 5n byte requirement of text plus suffix array (assuming an alphabet of
256 characters) can be significantly reduced by compressing the “self repeti-
tions” in the suffix array. For example, in Figure 3 the entries in S[9 . . .15] are
all one less than the entries in S[51 . . . 57] (underlined). There is a myriad of tech-
niques for achieving space savings which are elegantly surveyed by Navarro and
Mäkinen [18]. It also turns out that the connection between the BWT and S can
be exploited so that you get a self-index. A self-index is capable of reproducing
any substring of the text, and so can be stored in place of the text.

For the experiments in this paper we use an implementation variant of the
Sadakane’s “succinct suffix array” (SSA) [28] described and implemented by
Makinen and Navarro [17, Section 5]. This index was selected because previous
experiments indicate it is representative of the state of the art in compressed

Figure 1.8: An example of why a suffix array is compressible, quoted from Puglisi,
Smyth, and Turpin [31].

is presented in Figure 1.8. This contains the text on the top, which results in the

suffix array on the bottom. The underlined portion is a sequence of numbers which is

identical to the next sequence of numbers, except that the second time each number

is incremented by one value. Following the pointer S[i] back to the text, one can

see that each of these suffixes begin with “ s” (where is used to define a space).

It is this type of repetition which these compression algorithms take advantage of.

1.5.4 Cache Aware Programming

This is actually not a topic which is frequently addressed in the literature, but it is

something I have tried to consider as I wrote my own suffix array construction and

processing algorithms. One of the reasons that the fastest suffix array construction

algorithm is so fast, is that Maniscalco and Puglisi used cache conscious program-

ming techniques [24]. In a similar manner, Shinha and Zobel created a dynamic trie

structure that was also aware of the cache [32]. The parameters of their (now al-

most archaic) machines are shown in Figure 1.9. Using lmbench, I performed some

experiments on my own computer (a 2GHz Athlon 64 with DDR400 RAM), and

discovered that an L2 cache miss used at least 60ns of time, which works out to 120

instructions. Processor manufactures don’t often disclose the cost of a cache miss,

but there are various techniques used for detecting this latency along with other

parameters. One automatic technique performs significantly better than lmbench

at detecting a variety of parameters, and it is described in [40]. It is telling that the

only cache conscious construction algorithm is also the fastest.

29

Cache-Conscious Sorting of Large Sets of Strings • 9

Table I. Architectural Parameters of the Machine Used for the Experiments

Workstation Pentium Pentium UltraSPARC Power Mac G5

Processor type P III Xeon P IV USPARC III PowerPC 970

Clock rate (MHz) 700 2000 750 1600

L1 cache (KB) 16 8 64 32

L1 block size (Bytes) 32 64 32 64

L1 associativity 4 4 4 2

L1 miss latency (cycles) 6 7 12 8

L2 cache (KB) 1,024 512 8,192 512

L2 block size (Bytes) 32 64 512 128

L2 associativity 8 8 1 8

L2 miss latency (cycles) 109 285 174 324

Memory Size (MB) 2,048 2,048 4096 256

to one cache miss each, and there is a scan traversal of the buckets and source

array of pointers. In total, the expected number of cache misses is around 2–3

when the active locations fit within cache.

In contrast, radixsort involves cache misses for all of these reasons, but in

addition incurs a potential cache miss for each character in the prefix of each

string. The burst trie is small and may well be largely cache resident; thus trie

traversal does not tend to incur cache misses; the set of strings is large, and

thus each access to a string in radixsort may well have a cache penalty.

Moreover, string sorting using pointers to strings—as is necessary with

radixsort—is not TLB efficient as each access to a string may be a TLB miss.

Burstsort does well, as it reduces the number of accesses to the strings. In the

worst case it is possible that each access to a trie node or a bucket could be a TLB

miss, but it is not easy to construct an example in which such behavior occurs.

To demonstrate the generality of our algorithms, in our experiments we in-

clude results from several machines with varying cache architectures. As these

results show, burstsort gives improvements over previous algorithms under all

of these architectures.

4. IMPLEMENTATION OPTIONS

The implementation of burstsort used for our original work [Sinha 2002] was

strongly influenced by design choices that had proven effective for burst tries.

However, these are not necessarily ideal for sorting, where for example random

access to stored strings is not required. We therefore identified and evaluated

a range of implementation options. These were

—data structure used to represent buckets;

—size of the root trie node;

—bucket capacity;

—bucket sorting method.

In detail, these options are as follows.

Bucket representation. In our original work, we used linked lists to repre-

sent buckets. During the insertion phase, linked lists are highly efficient. First,

ACM Journal of Experimental Algorithmics, Vol. 9, Article No. 1.5, 2004.

Figure 1.9: A description of the architectural parameters of the machines used by
Shinha and Zobel, quoted directly from their paper [32].

Finally, with the advent of multi-core processors, it’s important to remember that

the bottleneck of the suffix array is the memory latency rather than the memory

bandwidth or processing speed. However, because a dual-channel memory system

uses a 128-bit (16-Byte) wide data cache, if all of the pointers which are associated

with each other are stored in the same part of memory, this could greatly increase

efficiency. In fact, the cache line will usually be 64 bytes wide on modern machines.8

There are also cache-prefetch instructions for both AMD and Intel processors, how-

ever these work better on sequential data—with a suffix array one doesn’t often

know what memory they will need until the time comes.

1.6 A Survey of Surveys

There are many surveys of datastructures which can be used for information re-

trieval. Each of these documents is in this section because it does not primarily

propose an algorithm but instead compares algorithms which were made previously.

Although I’m not sure if it’s been published formally, Pickens has an excellent paper

which gives an overview of different music representation schemes [28]. Zobel and

8I realize that I run the risk of calling something modern that the reader will now consider
antiquated.

30

Moffat created an excellent overview of the Inverted File structure [41]. It is to in-

verted files as this chapter is to suffix arrays—except that their paper is longer, more

articulate, and has better research. With the help of Ramamahonarao, they also

confirmed that the Signature File is almost always inferior to an Inverted File [42].

There are a few papers which focus on suffix arrays. Navarro and Mäkinen give a

recent and extensive overview of compressed suffix arrays [27]. Puglisi, Smyth, and

Turpin recently compared the speed of inverted files to the speed of suffix arrays

for searching DNA strands [31]. The trio also analyzed linear-time suffix array

construction algorithms [30]. The following year, in 1007, the three created the best

overview available: “A taxonomy of suffix array construction algorithms” [29]. This

document looks at the history of all of the various techniques.

1.7 An End of an Overview

Suffix arrays have a number of uses which have been described in this chapter. The

chapter is primarily a reference and a broad overview of all the literature, and any

missing information will probably be addressed by other papers listed in Section 1.6.

Much of the literature addresses how suffix arrays are used, but most of it seems to

focus instead on the problems of creating and searching suffix arrays. One of the

best, and most interesting algorithms is described in Section 2.1, and a new way

to use a suffix array to perform approximate string matching on a small query is

highlighted in Section 2.2. Although this technique is extremely fast, it gains its

speed primarily at the cost of memory usage. Nonetheless, the system would be

useful for searching through small documents today, and larger documents tomor-

row. The suffix array has received much greater attention in the past decade due to

DNA research, and the Burrows and Wheeler Transform described in Section 1.3.2.

Although most small searches are still done by scanning the entire text, and most

large search systems still operate using inverted files, the suffix array has enough

value to genetics and Statistical Machine Translation that it is here to stay.

31

Chapter 2

Two Suffix Array Algorithms

2.1 Ko and Alru’s O(n) Construction Algorithm

Arguably, the most interesting suffix array creation algorithm was introduced by Ko

and Aluru in 2003 [21]. This is the fastest O(n) algorithm for generating a suffix

array [29]. This section will walk through the process of sorting the array. As with

all suffix array sorting algorithms, we wish to sort the suffix array A that indexes

the data T . There is also a hidden reverse list R which allows a procedure to find

the current index into the suffix array A by knowing the index in T . This array

must change as A is sorted, so that at any time R[i] = k iff A[k] = i. The paper

distinguishes between a character at an index by ti and an entire string starting at

an index by Ti with the different capitalization, and I will follow this convention.

Of all the sections in this thesis, this one may be the most difficult to under-

stand. It is labourious to decipher the original paper, and I have endevoured to

write something more comprehencible. The algorithm contains several unique data

structures which were cumbersome to implement, and I will gloss over these details,

focussing instead on a description of the algorithm which is easier to understand

intuitively.

The fascinating thing about this algorithm is that it works. I implemented it to

perform the tests presented in Chapters 3 and 4 of this thesis. The piece of music

I processed was too short to generate reasonable timing statistics, but my program

created a suffix array from a Koiné Greek document, The New Testament, in just

3.5 seconds on a Pentium 4M 1.2GHz computer. By concatenating five copies of

this document together, my implementation also proved the O(n) properties of this

algorithm. Repeated tests showed that the program took four times as long to

process five times the data.

2.1.1 Step 1: Finding L-Type and S-Type Suffixes

Let us define a L-Type suffix as any suffix where Ti > Ti+1, and a S-Type suffix

as any suffix where Ti < Ti+1. Thus a S-Type suffix is Smaller than the following

suffix in the string, and a L-Type suffix is Larger. It is possible to go through an

33

entire suffix array from left to right and find every L-Type suffix and every S-Type

suffix in one pass. It is rather obvious that if first characters of two suffix strings

ti < ti+1 then the entire strings Ti < Ti+1. What is less obvious is what to do if the

characters ti = ti+1. Because of the terminating “$”, no two suffixes can be equal,

so how does one figure out whether one suffix is bigger or smaller?

This is how. If one starts counting from left to right using a new variable k

starting at k = i + 1 until there’s a new character which means tk 6= ti. At this

point, the string Ti...k has one more character than Ti+1...k, so we need to compare

the substring Ti...k−1 with Ti+1...k. We already know that every character in Ti...k−1

is identical because this string only goes to the position k − 1, and only the very

last character tk is unique. This is the key. If ti > tk, then Ti > Ti+1 making this a

L-Type suffix. Not only this, but every other suffix from i . . . k− 1 is also a L-Type

suffix.

Let’s use the example in Figure 2.1. The index i will start at position i = 0, and

ti > ti+1 because “y”>“a”, so this is a “larger” L-Type suffix. Increment i so that

i = 1, and t1 < t2 because “a”<“b” making this a “smaller” S-Type suffix. And

so on. But things get interesting again once i = 9 because the two suffix strings

T9 =“oo$” and T10 =“o$” share the same first character: T9 = T10 =“o”. Starting

k at k = 11, one finds that t11 < t9 because “$” is smaller than anything, and

we haven’t advanced yet, so k = 11. This makes position i = 9 an L-Type suffix,

because “oo$” is larger than “o$”. After advancing to i = 10 which is still i < k,

y a b d o $

yabadabadoo$

a a b da o

0 1 2 3 4 5 6 7 8 9 10 11

T

L S L L L L/SS S L SS L

i

Type

Figure 2.1: All of the “Larger” L-Type suffixes and “Smaller” S-Type suffixes.

34

the next suffix strings T10 and T11 are “o$” and “$”. They are T9 and T10 with the

first character removed: “oo$”→“o$” and “o$”→“$”. We know that these missing

characters are equal, because this is why we needed to define k and start looking for

a different character. This means that removing the first character from each string

will not change which one is greater. In other words, if ti = ti+1 and Ti > Ti+1

then Ti+1 > Ti+2. This is why every character between i and k− 1 is changed to be

L-Type or S-Type based only on tk being different (see Figure 2.1). This step only

takes one pass, so it is O(n).

2.1.2 Step 2: Sorting all the S-Type Suffixes

It is possible to sort the entire array if either the S-Type suffixes or the L-Type

suffixes are sorted.1 After counting the two types of suffixes in Figure 2.1, we find

7 L-Type suffixes but only 6 S-Type suffixes, therefore it is preferable to sort the

S-Type suffixes (it is possible to sort either type).

This process is shown in Figure 2.2, starting on the left side. Let us define a new

array, the S-Dist, which measures the distance to the most recent S-Type Suffix.

The S-Dist starts at zero to indicate values which are not part of any S-Type suffix,

and thereby do not need to be sorted. The first important position is at i = 2. This

is an L-Type suffix which is 1 suffix away from an S-Type suffix. The index i = 3

is an S-Type suffix itself, but it is still deemed two positions away from the nearest

S-Type suffix.2 These are used to define the positions in S-Type substrings, also

shown in Figure 2.2. We wish to sort these using a bucket sort strings character by

character, starting at the first character in each substring and working to the last

character of the longest substring.

The first step after finding the S-distances (which is not shown until Figure 2.4)

1In fact, Mori discovered a technique that requires only the right-most suffix in each series of
repeated S or L type suffixes needs to be sorted. He did not formally publish his work, but it is
described in [24].

2This follows the paper [21], though I orinally suspected it would be possible to use a zero
value for these suffixes. I changed my mind after trying to generate a suffix array from the string
“assassin$”..

35

y a b d o $a a b da o

0 1 2 3 4 5 6 7 8 9 10 11

T

S SS S SS

i

Type

0 0 1 2 1 2 1 2 1 1 2 3S-Dist

1

2

3

S-Dist based lists
“bucketed” by indexed letter:

2 46 8 9

3 5 10

11

a o

b d o

$

7

S-Type
Substrings:

a b a

da a

a b a

da

o $d o

$

1

3

5

7

8

11

1 2 3

1

3

5

7
Sorting S-Type Substrings:

1 53 7 811

1 1 5 3 7 811

2 1 5 3 7 811

3 1 5 3 7 811

$ a d

$

$

$

ab

ab

ab

ad

ad_

ad_ada

ada

d

d

d

Figure 2.2: The process of all the sorting S-Type substrings.

36

is performing a bucket sort of the entire array. At this point, we only care about

the suffixes starting with “a” being before those starting with “b” (later we will

care about S and L-type suffixes). Next, we will extract all the S-Type indexes and

put them in a special set of buckets which can be subdivided into smaller buckets

(without leaking). This is shown in the top row of the “Sorting S-Type Substrings”

section of Figure 2.2 (this is the only part of the figure which is for reference only—

all of the information here is stored somewhere else). Each entry in this row matches

the index for the first characters of the “S-Type Substrings”.

Then the “S-Dist based list” (see Figure 2.2) is created. An array array3 from

1 to the largest S-Dist value is created. Each element of this “vertical” array con-

tains another “horizontal” array4 which is large enough to contain all the data (See

Figure 2.2). The buckets in this list are there for pedagogical reasons—they do not

need to be defined. Because the entire array has already been bucket sorted by the

first letter at this point, these larger buckets will ensure that the items in the smaller

buckets of the S-Dist structure are already in the right order. The S-Dist structure

is allocated, and then S-Distances are read from the array we created from left to

right (see the top S-Dist list which is dark/green in the top of Figure 2.2). Every

character with an S-Distance that’s greater than zero is stored in the appropriate

row of the S-Dist array, in the next available column in the sub-array. It is impor-

tant that the character ti of each of these indexes i appears in the correct order in

the “horizontal” S-Dist array. It is not important that the entire strings Ti be in

order, this is accomplished later. The S-Dist array is created in its entirety.

Now, referring again to Figure 2.2, we wish to sort the S-Type Substrings in

the flexible “Sorting S-Type Substrings” structure using the “S-Dist based lists” we

just created. The top line (row 0) of the S-Type Substrings has been created, and

3Technically any data structure could be used for this step, but an array is the easiest structure
to envision.

4This is an array of an array which is awkward, but a two-dimensional array will not work
because this would take O(n2) space. It’s theoretically possible to run through all the indexes once
to create the S-dist, again to count the occurrences of each number, and once more to actually
process the data in O(3n) = O(n) time, and this terrible strategy (see Caching 1.5.4) is what is
described.

37

everything else above this line has also been made.

We start with the special subdividable buckets that are sorted according to the

first letter—this is row 0. Unlike the rest of the diagram, the section “Sorting S-

Type Substrings” is a progression of time, though the dark/green numbers for each

row do correspond to S-Dist values. We wish to take row 0 and transform it into

row 1. To do this, we will go through all of the entire S-Dist data structure from left

to right, top to bottom. Here, we find a 2, and looking in the data we find t2=“b”.

However, we don’t have an index 2 anywhere in our structure on the bottom because

we are trying to sort S-Type substrings and 2 is an L-Type. Therefore, we need to

find the S-Type index that 2 is associated with. This is done by remembering the

dark/green S-Dist value. After all, we are bucketing the 2nd characters in all the

S-Type substrings. The current S-Dist is 1, and the index we want is 2− 1, which is

the first element of the “a” bucket under “Sorting S-Type Substrings” in Figure 2.2.

It is already in the correct bucket according to the first character, so we need to

move it to the front of its current bucket. There is also a pointer to the front of the

“a” bucket which needs to be incremented to create a new “front” for the next step.

We have processed the index 2, and it’s time to move to the next index in the

“S-Dist based lists”. This index is 6. Again, this is an L-Type index, and we use

the current S-Dist number (1) to adjust the index to the previous S-Type index

(6− 1 = 5). Looking in the top row, we find the 5 and move it to the new so-called

“front” of the “a” bucket. (The 1 in the a-bucket was sorted in the previous step,

but the 3 is unsorted, which is why we incremented the “front”.) We exchange the

position of the 3 and the 5, moving the 5 to the correct position, and increase the

“front” to make sure the item we just sorted is not moving again.

This next step is an important step. We reach the index 4 (the first element in

the pedagogical “d” bucket in the S-Dist array). This converts to the S-Type index

3 which has just been swapped with the 5. Perhaps it would be efficient to make

these buckets more than pedagogical after all, because t5 =“d” which is different

than any other element in the substantive “a” bucket at the bottom. This is why

38

the buckets must be subdividable. In the next row, labeled 1 in “Sorting S-Type

Substrings” from Figure 2.2, you will notice that this bucket has been split into two:

one “ab” half and another “ad” half.5

Creating new buckets is the key to this process. We want to create one bucket

for every unique “S-Type Substring” (see the list of these substrings in Figure 2.2).

Before, {1, 3, 5, 7} were all grouped together because they started with an “a”, but

now {1, 5} are in the “ab” bucket and {3, 7} are in the “ad” bucket. Eventually,

every unique substring will have its own bucket, and all the identical substrings will

share a common bucket.

Things progress along rather smoothly, as one goes through the “S-Dist based

lists” until after we finish the S-Dist= 2 values. At this point, there is an implicit

bucket, because the 3 has been moved to the front of the “ad” bucket, but the 7

has remained at the end without being called. This creates a new implicit bucket

represented by “ad ” to emphasize that it’s just “ad” rather than its “ada” coun-

terpart it shares its half-bucket with in Figure 2.2.6 Creating this extra string is the

only hiccup in the rest of his process.

The complexity of this section is O(n), presuming a relatively small alphabet

of less than n, because the entire S-Dist lists every element precisely once–except

for those indexes where the S-Distance is 0 which are omitted entirely. The array

can be created with a linear scan, and each index is processed in O(1) time, so the

current complexity is sound. In brief, this is only an extension of the bucket sort

(also called radix sort).

2.1.3 The Recursive Step

Now that the S-Type substrings have been sorted, the recursive step is introduced.

This is the fun step. In order for this to remain O(n) complexity instead of

O(n log n), less than 1
2

of elements are passed on to each recursive step, as explained

in Section 1.5.1.

5Reading this sentence quickly may prove as a good test for dyslexia.
6These half-bucket remains at the end of the bucket by design [21].

39

y a b d o $a a b da o

0 1 2 3 4 5 6 7 8 9 10 11

T

S SS S SS

i

Type

Sorted S-Type Substrings:

1 5 3 7 811

b da c$

b da c $a

a b a d

abacd$

c $

0 1 2 3 4 5

T'

S L S SS L/S

i'

Type

1 3 5 7 8i 11

Returned value:

0 12 3 45

1 35 7 811

Figure 2.3: The recursive process.

40

To do this, a new alphabet must be created. In order for the bucket sort to

continue to be effective, the size of the alphabet is restricted to a maximum of one

letter for each S-Type substring |Σ| < n. This is shown in Figure 2.3. Normally,

the alphabet would have a numeric representation, but the diagram continues to use

letters to differentiate between the alphabet and the other numbers in the image.

To review, we now have one bucket for every unique S-Type substring in the

array (See Figure 2.2), and these buckets are already in sorted order. The indexes

and their buckets are shown at the top of Figure 2.3. Going from left to right, and

from least to greatest, a new letter is assigned to every bucket so. Because every

S-Type Substring in a given bucket is less than the substring in the next bucket,

the new alphabet characters are assigned in lexicographic order.7

Next, a new string is created, and every S-Type substring is reduced into the new

alphabet as shown in Figure 2.3. This could be done relatively inefficiently, but in

O(n) time by going through the sorted S-Type Substring list and the corresponding

alphabet to create a new string with the correct number of each character. For

the diagram, this string would become “aabcd$”. A forward and reverse array of

links between each character and the appropriate suffix, and each suffix and the

appropriate character would also be maintained. Then, by scanning the original

data for all of the S-Type suffixes and moving the corresponding character to the

front, one could unsort the new string. It would change from “aabcd$” to “abacd$”.

Some form of links between the characters and their corresponding indexes (such as

the list of i and i′ in Figure 2.3) must also be maintained. It would undoubtedly be

possible to create a more efficient data structure for the process. The procedure is

called recursively with the new string (T ′), and the new S-Type and L-Type suffixes

are found, and the entire process is repeated.

After the called function returns, the newly created array A′ is itself sorted, and

the final order of all the S-Type indexes can be taken from the contents of this array.

The bottom right corner of Figure 2.3 shows the returned values, and how a new

7Ko and Aluru prove this formally in their paper [21], but they desperately needed the diagram
shown in Figure 2.3 in this thesis to efficiently explain the concept.

41

array for i can be created from the i′ that was returned with the recursive call. We

now have all of the S-Type suffixes sorted into their final order in a single array.

2.1.4 Step 3: Sorting the L-Type Suffixes from the S-Type

Data

Before S-Type substrings (which are shorter than the full suffix strings), and before

the S-Type suffixes were sorted recursively, the entire suffix array A was organized

into buckets. We had also evaluated whether each position was a L-Type or an

S-Type index. Now, the sorted order of the S-Type indexes must be incorporated

into the array.

There is an extremely important attribute of an S-Type suffix that has not yet

been discussed. Any “Smaller” S-Type suffix will appear after a “Larger” L-Type

suffix which starts with the same letter (ie. one that is in the same bucket.). This

is counter-intuitive, because the a “smaller” S-Type was labeled S-Type because it

was smaller than the suffix which immediately succeeds it in the original data, but

it makes perfect sense after giving it some thought.8 Take any simple suffix which

does not begin with a repeated character. By definition, at the index i an S-Type

suffix’s first character ti < ti+1 whereas an L-Type suffix begins with ti > ti+1. This

is the context in which the S-Type suffix is “smaller”, and the L-Type “larger”.

Now let’s presume that an S-Type suffix and an L-Type suffix both begin with the

letter “d” (such as L-Type “da. . . ” and S-Type “do. . . ” in the diagrams). In this

case, they cannot be sorted based only based on the first “d” in the string, but must

be sorted by the rest of the string instead. Now an S-Type suffix is “smaller” than

the suffix starting with it’s second character, because this is where the second suffix

came from. Let S be the S-Type suffix string, L be the L-Type suffix string, and si

and li represent the individual characters in the i position. We already know that

the first characters of both strings are the same, s0 = l0 because they’re in the same

bucket. And we know that, in the simple case, the second character s0 < s1 and

8Once again, Ko and Aluru give a formal proof of this in their paper [21].

42

l0 > l1. Now because s0 = l0, l1 < s0 < s1 which means L < S. (The example

confirms that the L-Type “da. . . ” is indeed less than the S-Type “do. . . ”.) This

also extends beyond the simple case to one where the first characters s0 = l0 =“d”

and the remainder of the strings L1... <“ddddd. . . ”< S1....

y a b d o $a a b da o

0 1 2 3 4 5 6 7 8 9 10 11

T

S SS S SS

i

Type

Order of S-Type Suffixes: 51 3 711

New Buckets:

a b d o y$

11 51 3 7

8

2 6 9 10 0

Check:

84

11 51 3 7 2 6 9 10 084

11 51 3 7 2 6 910 084

Original Buckets:

a b d o y$

11 31 5 7 2 6 9 10 084

Final Result:

Figure 2.4: Using the correct order of the S-Type suffixes to determine the final
suffix array.

Referring to Figure 2.4, we have the “Original Buckets” ready made, and the

“Order of S-Types Suffixes” still needs to be integrated into the “New Buckets”.

Let’s say that each bucket in the array A has both a “start” pointer and an “end”

43

pointer which are not truly the start and end of their respective buckets. Instead,

this “start” and “end” correspond to the first and last unsorted location in its

respective bucket.

Moving backwards from right to left through the “Order of S-Type Suffixes”

which have been returned and are presumed correct, let’s move each index encoun-

tered to the “end” of its bucket, and move the “end” of the bucket forward so that

this index cannot be moved again. For example, referring to Figure 2.4, the index

8 is already at the “end” of its bucket so only the “end” would be changed, and

likewise with the 7. However the 5 is out of place. By this time (due to the 7) the

“end” of the “a” bucket would be one position to the left, and this position needs

to become a 5. This is done by swapping the 5 (the next largest value) with the

3 in the “end” position (the next largest location). After this process is complete,

every S-Type suffix will already be in the final location in the array. This is because

it’s already in the correct order returned from the recursive call, it’s already in its

correct bucket, and it’s greater than every L-Type suffix in its bucket.

Now comes a fascinating process of moving each L-Type suffix to its proper

location. This depends on the reverse suffix array R which allows us to link an

index in the data T back to its position in the suffix array A. First, presume that

everything in the array to the left of the index i is already correctly sorted. (In

our case, the “$” character is smaller than anything else.) Now, find the position

Ai in the data T , and go back one character. Use R to find the current position of

that suffix in A. In Figure 2.4, during the “check”, when i = 0, Ai = 11 (the last

suffix of the data “$” is already in the correct position in the array). Now instead of

looking at that suffix, look at the suffix one before this value (T11−1 = T10 =“o$”).

Notice that the second character in this string is the character corresponding to our

current bucket. Presuming the lexicographic value of our current bucket is smaller

than the value of the bucket this index is in, this string must be smaller than any

other string in its entire bucket. In our case, the string “o$” is smaller than the

string “oo$” because the second character is “$”<“o”. Therefore move it to the

44

front of its current bucket (remember that the bucket represents its first character,

so it cannot move out of that). In this case, the 10 is moved to the front of the

“o” bucket by swapping the 10 with the pointer to the “front”, and then increasing

the “front” because this index is now in its final location.

By moving forward from left to right through the entire suffix array A, the final

sorted suffix array is obtained. In Figure 2.4, the “Check” represents the only change

in the example, however the “Final Result” shows the arrows representing the rest of

the checks which need to be made, even though they don’t change the data. When

each position in the suffix array is reached, the index pointed to by the end of the

arrow is moved to the front of the bucket as long as both of these conditions apply:

firstly, the index must be ahead of the current position in the suffix array (otherwise

it will already have been sorted), and secondly, the index must be an L-Type suffix

(otherwise it was already sorted by recursion). For example, there’s no arrow going

from the 4 in the “d” bucket both because it would be going backwards (the 3 is

stored to the left of the 4) and because it would point to an S-Type suffix.

Now let’s say we tried to perform this step without first sorting the S-Type

suffixes. In our example, it would work by coincidence, but if the S-Type suffixes

were scrambled it would still fail even if every index were sorted by bucket. This is

because the second character of an S-Type suffix can be larger than its first character.

At the time the position of an S-Type suffix is reached, the second character would

not have been tested. In order for it to be sorted into the correct position, the scan

would have to proceed backwards from right to left. With an L-Type suffix, even

if the first few characters were the same, eventually there would be a tie-breaker

between it and the next-closest L-Type Suffix, and this tie-breaker character would

be from a bucket that’s already been tested. This would move the Suffix ending

the tie-breaker to the beginning of its bucket, and therefore it’s previous character

would be tested before any of the other previous characters—even if the “front” of

the bucket were updated only just in time for the next test. (The formal proof for

this looks a little more eloquent [21].)

45

Missing Link

The precise opposite set of procedures ought to be created in case the Type-S suffixes

are more prevalent than the Type-L (such as is the case with the new string T ′ in

Figure2.3). Because it’s impossible for an index to be both a Type-L and a Type-

S suffix (with the exception of the terminating charcter “$”), the number of the

substrings which need to be sorted is less than n
2
. By being able to handle either

case, sort a suffix array in both O(n) time and O(n) space.

2.2 Approximate String Matching

In music, and also in many other forms of Information Retrieval, an approximate

string matching algorithm can be employed. This was recognized by Dias and Gil

who used suffix arrays to compute “Positional N-grams” [14]. A Positional N-gram

allows a Statistical Machine Translation system to associate out-of order words. The

paper focuses not on searching for the words specifically, but on building a database

of the probability that words could be associated together. It uses a suffix array

to count the number of times a pivot word appears in a text, and then creates its

statistics based on this.

There are two papers which address approximate string matching without us-

ing an inverted index. The one created by Yamamoto et. al. uses a suffix array

to generate many small queries extremely quickly, and then calculates a separate

similarity index [37]. The other is a technique created by Ukkonen in 1993 that

augments a suffix tree with enough information to allow an efficient approximate

search using dynamic programing. Although he suggests that perhaps his process

could also be implemented using a suffix array, the technique is restricted because

it depends on a small alphabet size.

The goal of most approximate string matches is to find two strings with a small

edit distance k between them. This idea was introduced in Russia by Levenshtein

46

in 1966 [23].9 He defines the edit distance between String A and String B as the

minimum number of insertions, deletions, or replacement it would take to transform

String A into B. The technique presented in this chapter generally follows this

convention.

As with many algorithms, I have a specific goal in mind, and it serves as a

wonderful example. I would like to find the edit distances between different sentences

rather than individual words to try to improve SMT so that it can generate more

effective results with a smaller corpus. As an example of a small corpus, consider

the Greek New Testament used in Chapter 3. It contains about 5500 unique words,

and contains 138000 words total. Greek is an intensely morphological language,

so many of these words have many different forms in the text. But the text has

been hand-sorted, and each word has been stemmed to an appropriate value.10 It

is possible to build a suffix array based on these stemmed values, which is like an

array of inverted-index values, or like a computer representation of a Chinese text

with one character (represented by a number) for every word. After creating this

version of the text to allow searching these words and phrases, the searches could be

used to create cross-references between passages or, in the case of a new translation,

could be used to reference previously translated sections. (Grammatical attributes

could be stored separately, perhaps in a separate suffix array, but this is not used

in the examples.)

However this is a simple conversion process to facilitate searching for stemmed

words, but it does not account for an edit distance. That is what is defined below

in Figure 2.5. This is a structure which can handle both insertions and deletions,

but not replacement. Because the text is small, it may be stored many times (the

New Testament can fit comfortably into 32MB more than a dozen times, even with

a large amount of data to allow quickly searching a suffix array). The insertion and

deletion operations may both be performed by performing deletions in the Search

9This is the other document found in all the literature which I have not been able to obtain a
copy of.

10Perhaps the most famous is Strong’s Exhaustive Concordance of the Bible published in 1890.

47

String and in the text.

Pattern Data stored in the suffix array Search String

XXXX we can see there is the text which is stored repeatedly this is the search
XXX we can see is the text is stored repeatedly this is the
XX X we can there is the which is stored this is search
X XX we see there is text which is repeatedly this the search
XXX can see there the text which stored repeatedly is the search
XX we can is the is stored this is
X X we see is text is repeatedly this the
X X we there is which is this search
XX can see the text stored repeatedly is the
X X can there the which stored is search
XX see there text which repeatedly the search

Figure 2.5: Searching a suffix array allowing for two insertions and two deletions

In the example in Figure 2.5, we have a maximum search length of four charac-

ters, and 11 copies of the text are necessary. (For a more comfortable edit distance

of 9, 46 copies are needed.) There is a pattern, shown in the left column, that is

used to delete words in both the search string and the original text. This pattern

can be generated by counting in binary, and then removing all of the entries that

require more than two deletions. The search string is edited in the same way.

Now, using up to 2 deletions and up to 2 insertions, it is possible to find “this

is the search” in the text. Only the phrase “is the” actually produces results, and

these four results are highlighted in the diagram. The best part about this algorithm

is that the first word of the phrase does not have to line-up with the original text.

This allows the first position of the Search String to match the fourth position of the

text. Thus every instance of the String within this edit distance is found using only

11 searches—presuming the length of the string is equal or less than 4 “characters”

(|P | < 4). It would take O(4) time to index in a single suffix array. To get this

efficiency, it is necessary to store all of the data in just one suffix array rather than

splitting the suffix array into sections. The precise nature of the match can be

detected after it’s found based on the index or supplimentary data.

The primary problem with this basic search, is that it only accounts for insertions

and deletions. Thus many results are returned, when one is significantly better than

the rest because the edit distance is better. This can be solved by creating a special

48

Pattern Data stored in the suffix array Search String

XXXX we can see there is the text which is stored repeatedly this is the search
XXX we can see — is the text — is stored repeatedly this is the —
XX X we can — there is the — which is stored — this is — search
X XX we — see there is — text which is — repeatedly this — the search
XXX — can see there — the text which — stored repeatedly — is the search
XX we can — — is the — — is stored — this is — —
X X we — see — is — text — is — repeatedly this — the —
X X we — there is — which is — — this — search
XX — can see — the text — — stored repeatedly — is the —
X X — can — there — the — which — stored — — is — search
XX — — see there — — text which — — repeatedly — — the search

Figure 2.6: Searching a suffix array allowing for an edit distance with up to two
replacements

word, “—” in Figure 2.6, that is unique in the entire datastructure. This word

is used in order to represent any word that is being replaced, thus extending the

algorithm from one that only allows insertions and deletions to one that can detect

replacements as well. Notice that the amount of time needed to search in this

structure is virtually identical to the previous structure, but the amount of space

needed has actually increased because of the need to store the extra “—” words.

However the result is significantly better. An extension to allow words to be swapped

could be made as well. It would probably be most efficient to do this in the queries,

except, perhaps, for the special case where two words are swapped so that these

could be searched at the same time as the other strings. (Using the New Testament

as an example, “Jesus Christ” and “Christ Jesus” are both extremely frequent terms

which refer to the same person.)

Finally, there is a special case of searching for two words which are both close

to each other. This is shown in Figure 2.7. The search string could be reversed to

allow either word in the search pattern to appear first. The thing that makes it a

special case, is that the memory required for the suffix array varies directly with the

maximum distance between the words required in the search. As you can see in the

diagram, all of the blank spaces do not effect the search, and do not take up space,

thus each set of rows will compress into the size of one row. It’s also important to

note the false-positive for the phrase “repeatedly there” in Figure 2.7 which wraps

around from the end of one document to the beginning of the next iteration. This

49

Pattern Data stored in the suffix array Two-Word Search Strings

X we can see there is the text which is stored repeatedly text see see text
X we see is text is repeatedly is which which is
X can there the which stored there repeatedly repeatedly there

X we there text stored there is is there
X can is which repeatedly
X see the is

X we is is
X can the stored
X see text repeatedly
X there which

X we the repeatedly
X can text
X see which
X there is
X is stored

Figure 2.7: Searching for a pair of words which occur within 5 words from each
other.

problem can be solved by using a special end-of-document character in addition to

the blank-word character.

50

Chapter 3

Suffix Arrays and Koiné Greek

3.1 Background

By the time of his death in 323 BC, Alexander the Great had conquered most of

the known world. His conquests ushered in the Hellenistic Period and this was the

primary reason Greek was the language of trade four hundred years later, much

the way English is today. The form of Greek spoken in the 1st Century A.D. is

known as Koiné Greek, from the Greek word “κοινή” which means common. One

rather notable document written in Koiné Greek is the New Testament. Many

people, myself included, learned this ancient language expressly to understand this

particular text better. It would be surprising to find any text (either sacred or

secular) which has been analyzed more than the New Testament from the Bible.

Because of this, it serves as an excellent testing ground for new ways of analyzing

text. In this thesis I have been able to start with pre-analyzed text, and show how

the suffix array can be used to analyze it further. The original Koiné Greek text is

extremely well analyzed—several parsed versions are available in electronic form.

One fascinating thing about analyzing Koiné Greek is that there is such a small

corpus of text. Documents constantly need to be translated between French and

English due to the political system in Canada and the European union. Legislation,

other legal documents and Parliamentary proceedings need to be translated when-

ever they are written. This is not the case with Koiné Greek because the language

is dead; it’s sufficiently different from modern Greek that a different system would

need to be employed for recent Greek documents. People who translate from Koiné

Greek usually focus on translating into new languages with a relatively small num-

ber of native speakers and on understanding precisely what the author meant by

what he said. This leads to a more painstaking approach to translation than one

usually sees in other areas.

Another fascinating thing about the Koiné Greek New Testament is that because

its corpus is so small, the text has been repeatedly analyzed before. In 1890, after

years of research with the help of more than a hundred colleagues, Dr. James Strong

published his concordance of the Bible. This amazing work assigned a unique num-

52

ber to every Koiné Greek and Hebrew word. Today this type of research would be

impressive, but the work seems even more astounding because it was occomplished

without the assistance of a computer! Because Greek is a highly morphological lan-

guage, automatically parsing a word—especially a verb—is not a simple task. To

combat this problem, I have used a numbering system as a starting point for my

analysis of the text.

3.1.1 Description of the Format

For the purpose of this project, I used a slightly different version of the New

Testament which was formatted for computer processing by James Tauber and Ul-

rik Peterson [33]. (Although the text itself is currently available from the original

website, the information about the text can only be accessed through an Internet

archive such as the Wayback Machine [34].) The Greek text was stored with all its

accents using the UTF-8 form of Unicode, and the formatting was very easy to work

with. Each word had its own line, and line has a separate column for five items: the

chapter and verse, part of speech, morphology, word as it appears in the text, and

word as it appears in a dictionary. This is somewhat similar to the way I reduce

music to a series of intervals in Section 4.1.2. For the purpose of this thesis, I found

every unique word in its dictionary form based on the cast column from Tauber and

Peterson’s text. After this, I converted each unique word into a number. Finally,

I went back through the original text and converted the last column in each line

from the dictionary form of the word into a number. It is this number that I used

to create the suffix array.

For example, the line: “040316 V- 3AAI-S– ἠγάπησvεν ἀγαπάω” represents the

first verb from John 3:16.1 The number (040316) can be split into three columns

(04 03 16). The “04” represents the book, John, which is the 4th book in the New

1 The full text of John 3:16 is “οὕτως γὰρ ἠγάπησvεν ὁ θεὸς τὸν κόσvμον ὥσvτε τὸν υἱὸν τὸν
μονογενῆ ἔδωκεν ἵνα πᾶς ὁ πισvτεύων εἰς αὐτὸν μὴ ἀπόληται ἀλλ΄ ἔχῃ ζωὴν αἰώνιον” which means
“For God loved the world this way: he gave his one-of-a-kind son so that all those believing in him
should not die but have eternal life.” This verse is extremely popular in North America and its
reference can often be seen on signs in the crowd at sporting events.

53

Testament. The 03 and 16 represent the chapter and verse respectively. The part

of speech is a verb (V-) and it’s parsed as a 3rd person singular, aorist (past tense)

active indicative (3AAI-S–). The verb, “ἠγάπησvεν” (he loved), is then represented

in its dictionary form, “ἀγαπάω”.2

For the purpose of this thesis, almost all the information for each word is set

aside and ignored. The only piece of information I use for searching and sorting the

suffix array is the dictionary form of the word, except that I converted each unique

word into a number. For the example above, I changed the line to “040316 V-

3AAI-S– ἠγάπησvεν 3514” before loading it into the main program. The number

3514 is similar to a Strong’s number because it represents the Greek word “ἀγαπάω”

however it was easier for me to write a script to generate my own numbering scheme

than to borrow Strong’s. The precise numbering scheme doesn’t matter as long as

there is a unique number for each word. The additional information for each word

is stored in the data structure as it is loaded so that the text can be printed in the

original form and the verse references can be used for creating the cross-reference

(see Section 3.3).

3.1.2 Textual Limitations

One of the more fascinating things about studying a 2000 year old document is the

textual differences of various manuscripts. The New Testament is compiled from

hundreds—even thousands—of different manuscripts many of which contain only

small fragments of the whole text. The oldest manuscript is the Rylands Library

Papyrus (P52) which is a small fragment from the Gospel of John dated circa 125

A.D. As a comparison, Homer’s Odyssey and Iliad are compiled from far fewer

fragments which were transcribed a greater number of years from when the original

autograph was written.

Although I realize that a translator should take note of these subtle textual

2“ἀγαπάω” is the traditional lexical form of the Greek word. It similar to the 1st person present
active indicative form (i.e. ἀγαπω, I love), but the slightly different “άω” ending is used to indicate
how the verb is conjugated. This is why the word was not translated in the text.

54

differences, I have totally ignored them in my research. This is mostly because I am

trying to prove computational concepts rather than create a full translator’s aid. It

is also because most of these differences are very subtle and it’s usually very easy

to see which text is accurate by looking for patterns in the way various supporting

manuscripts change over time. However if this project were expanded into a full

translator’s aid, it would be relatively important to allow the translator to see the

text in its various forms.

3.2 Finding Phrases in the Greek New Testament

The simplest application of my research is finding common phrases in the New

Testament. This is almost like looking at the raw data created through the suffix

array construction (Section 2.1) and finding all of the Longest Common Prefixes

(Section 1.7). Getting to this point, however, was the most difficult part of the

thesis.

A biblical scholar who reads this chapter will probably find it interesting, but

they will also realize that I haven’t found any phrases which haven’t been studied

before. The methods that I use here reveal new insights into the New Testament to

the same extent that a flashlight helps a person see on a sunny day. If I’ve written

any insights, they are insights which have been seen before. I am not trying to

prove that the suffix array achieves better results than a trained scholar or other

computerized tools. Instead, I want to show that the suffix array is capable of

quickly and automatically revealing the same things that people have known about

for centuries. In other words, if a suffix array contains known results with the

New Testament, it should be useful to reveal new results with other documents.

Although it may be able to provide search results for the New Testament more

quickly than other tools, the difference in time would typically only be a matter

of milliseconds—though even a number of milliseconds may matter in a computer

55

assisted translation environment. I also try to speculate on how finding repetition

within a small document could help create a computer assisted translation system

described more fully in Section 3.4.

3.2.1 Methodology

As mentioned in Chapter 1, a suffix array is a table of all of the suffixes in a text

sorted alphabetically. Each suffix starts from some word in the New Testament and

goes to the end of the document. Sorting the table will place every identical word

or phrase right next to all of its other occurrences in the text. The concept is best

illustrated by example, and the simplest example was already given in Section 1.2.

The result is basically the entire New Testament sorted by the rest of the New

Testament.

Line LCP Verse Koiné Greek Text

1 4 Mat 19:28 ὁ υἱὸς τοῦ ἀνθρώπου ἐπὶ θρόνου δόξης αὐτοῦ καθήσvεσvθε καὶ ὑμεῖς ἐπὶ δώδεκα θρόνους

2 5 Mat 9:6 ὁ υἱὸς τοῦ ἀνθρώπου ἐπὶ τῆς γῆς ἀφιέναι ἁμαρτίας τότε λέγει τῷ παραλυτικῷ ἐγερθεὶς

3 4 Mat 11:19 ὁ υἱὸς τοῦ ἀνθρώπου ἐσvθίων καὶ πίνων καὶ λέγουσvιν ἰδοὺ ἄνθρωπος φάγος καὶ οἰνοπότης

4 14 Luke 7:34 ὁ υἱὸς τοῦ ἀνθρώπου ἐσvθίων καὶ πίνων καὶ λέγετε ἰδοὺ ἄνθρωπος φάγος καὶ οἰνοπότης

5 5 Luke 17:26 τοῦ υἱοῦ τοῦ ἀνθρώπου ἤσvθιον ἔπινον ἐγάμουν ἐγαμίζοντο ἄχρι ἧς ἡμέρας εἰσvῆλθεν Νῶε

6 4 Luke 12:40 ὁ υἱὸς τοῦ ἀνθρώπου ἔρχεται εἶπεν δὲ ὁ Πέτρος κύριε πρὸς ἡμᾶς τὴν παραβολὴν ταύτην

7 5 Mat 24:44 ὁ υἱὸς τοῦ ἀνθρώπου ἔρχεται τίς ἄρα ἐσvτὶν ὁ πισvτὸς δοῦλος καὶ φρόνιμος ὃν κατέσvτησvεν

8 5 Luke 18:8 ὁ υἱὸς τοῦ ἀνθρώπου ἐλθὼν ἆρα εὑρήσvει τὴν πίσvτιν ἐπὶ τῆς γῆς εἶπεν δὲ καὶ πρός τινας

9 5 Luke 21:27 τὸν υἱὸν τοῦ ἀνθρώπου ἐρχόμενον ἐν νεφέλῃ μετὰ δυνάμεως καὶ δόξης πολλῆς ἀρχομένων

10 9 Mark 13:26 τὸν υἱὸν τοῦ ἀνθρώπου ἐρχόμενον ἐν νεφέλαις μετὰ δυνάμεως πολλῆς καὶ δόξης καὶ τότε

Figure 3.1: An excerpt from the suffix array generated using the New Testament

The example in Figure 3.1 is intended to show how a suffix array is useful for

analyzing this document. Each line in this excerpt starts with the phrase “ὁ υἱὸς

τοῦ ἀνθρώπου” which means the son of man. This is the most common way Jesus

used to refer to himself in all four gospels. With some knowledge of Greek, it’s easy

to see that the morphology has been ignored as explained in Section 3.1.1 above.

For example, line 5 start with “τοῦ υἱοῦ τοῦ ἀνθρώπου” (of the son of man) which is

included with the other references despite being in the genitive form. This particular

56

reference actually starts in the middle of a sentence and the middle of a concept—

the verse actually refers to “ταῖς ἡμέραις τοῦ υἱοῦ τοῦ ἀνθρώπου” (the days of the

son of man). Although this phrase is only two lines earlier in the input document,

it occurs over four thousand lines later in the output of the suffix array because of

the way all the words are sorted alphabetically.

3.2.2 About the Longest Common Prefix (LCP)

Another fascinating part of this excerpt is the LCP (Longest Common Prefix) col-

umn. As mentioned in Section 1.7, the longest common prefix is the greatest number

of words one line has in common with the line immediately previous to it. All of

the words in Figure 3.1 share the first 4 words in common, and this is why the LCP

is always at least 4. The longest LCP is between lines 3 and 4 with 14 words in

common—long enough to exceed the size of the table!3 There are a couple inter-

esting things about these two lines. One is that Matthew wrote this accusation in

the third person plural “λέγουσvιν” (they say) whereas Luke used the second person

“λέγετε” (you say). Because the root word is the same, the algorithm ignores this

subtle difference. The next interesting thing is that this phrase spans from verse 34

to verse 35 in Luke, but the same 14 words from both verses are contained in the

same verse in Matthew. The suffix array ignores verse and sentence boundaries. This

is a good thing partially because these boundaries were not marked in the original

manuscripts; the verses were added later.4 Sometimes sentences were marked but

sometimes even the spaces between words were omitted. The verse boundaries are

used, however, with the way I process cross-references (see Section 3.3).

The LCP index for each verse is an extremely useful tool, but finding the LCP

between two different lines is not always immediately obvious. For example, how

3The full text from Mat 11:19 is “ὁ υἱὸς τοῦ ἀνθρώπου ἐσvθίων καὶ πίνων καὶ λέγουσvιν ἰδοὺ
ἄνθρωπος φάγος καὶ οἰνοπότης τελωνῶν φίλος καὶ φίλος καὶ ἁμαρτωλῶν καὶ ἐδικαιώθη ἡ σvοφία ἀπὸ

τῶν ἔργων αὐτῆς” which means “The son of man [came] eating and drinking and they say, ‘Behold
a gluttonous and drunk man, a friend of tax collectors and of sinners.’ And wisdom is justified by
her works.”

4This did cause some trouble described on page 83.

57

can one calculate the LCP of lines 5 and 7? The LCP column of both lines indicates

a 5, but they only have four words in common. The verb “ἐσvθίω” (I eat) in line 5

becomes the verb “ἔρχομαι” (I come) in line 7. This means that the pre-calculated

LCP values can only be used with adjacent lines directly, though other lines can be

calculated using the intermediate lines as a guide.

For example, let’s find the Longest Common Prefix (LCP) between line 5 and

every other line with at least one word in common, starting in the upward direction.

The LCP at line 5 is 5 indicating that lines 4 and 5 have 5 words in common. Note

that “ἐσvθίων” (eating) and “ἤσvθιον” (they ate) are both forms of the same Greek

word “ἐσvθίω” (I eat). The LCP index at line 4 is 14, however because the current

LCP with the intermediate line 5 is only 5, the LCP between line 3 and line 5 is

still only 5. At line 3 the LCP drops down to 4 indicating that lines 2 and 5 have

an LCP of 4. As the process continues, with the current LCP sometimes decreasing

but never increasing, an LCP of zero is reached somewhere above the top of the

table. When an LCP of zero eventually comes, this indicates a phrase which doesn’t

start with “ὁ” (the).

After processing all of the lines which match line 5 in the upward direction, it’s

also important to find all common lines in the downward direction too. Note how

the LCP between lines 5 and 6 is stored beside line 6 instead of line 5. This is the

difference between pre-incrementing the line and post-incrementing it whenever a

new LCP value is retrieved from the table. Apart from this subtle difference, the

LCP is calculated in the same way. Lines 5 and 6 have an LCP of 4. Lines 5 and 7

also have an LCP of 4 because the extra word in common is shared between lines 6

and 7 but not between lines 5 and 6. As the process continues, it would find that

line 5 shares these same four words with every other line in this excerpt.

3.2.3 Program Performance

As mentioned in Section 1.5.4, one of the greatest problems associated with suffix

arrays is the problem of cache misses. This is because a large amount of data is

58

stored in a seemingly random fashion, and it’s difficult to predict where the next

memory reference will be. The fastest computing hardware for suffix arrays has low

memory latency. At the time of this writing, AMD is usually superior to Intel in

this regard because of the way AMD processors have integrated memory controllers.

Also, multi-core processors will not speed up a program that requires low memory

latency even if the code is rewritten to take advantage of the greater processing

power.

Although I didn’t fully optimize my program to be cache conscious, I did ensure

that most of the data was stored in arrays of structures where each element contained

several fields rather than separate arrays with related data at the same index of

both arrays. This ensured that when I was dealing with one piece of information

associated with some data, it would be more likely that all of the other information

associated with that data would also find its way into the cache at the same time.

The program could be improved by tweaking the structures to occur on common

cache boundaries such as (every 16, 32, or 64 bytes) and using a memory allocation

routine which also respects cache boundaries. The program could also easily be

modified to use less memory which would be particularly useful for larger documents.

I was pleasantly surprised to find that my implementation of the suffix array

construction algorithm described in Section 2.1 ran quickly. It took just 3.5 seconds

to process all 138000 words in the new testament on a modest 1.2 GHz Pentium

4M. This includes the time taken to load and save various files. I also verified that

this program took about four times as long when I gave it five times as much data

indicating that the construction algorithm does behave in a linear fashion (at least

until it runs out of RAM).

3.2.4 Common Phrases in the Greek New Testament

The simplest way to create something useful from the raw data generated from the

suffix array and Longest Common Prefix (LCP) calculations, is to find the longest

and most common phrases. Although it is somewhat useful in its own right, this is

59

particularly important in understanding the type of information that a suffix array

may be able to uncover. If one is to use a Suffix Array for much of anything, it would

be good to know what sort of information such a data structure may contain. A

small excerpt from the middle of this output is shown in Figure 3.1; the full output

contains about 138000 lines of text with one line for every word. I processed all of

the LCP values as explained in Section 3.2.2 and then sorted them according to the

most common phrases with the same number of words. This section examines the

results.

The most common phrase (if it can be called a phrase) is the one-word phrase

“ὁ” which is the Greek word for “the”. This word occurs almost 20000 times in

the New Testament which represents 14% of the entire document! In fact, this

word is so ubiquitous that more useful results may be obtained by eliminating it

altogether. If the article were removed, perhaps the suffix array could find better

string matches. One example which shows how trivial the article can be to the

meaning of a phrase, and how this makes it more difficult to search for a phrase, is

given on page 70. The word could either be re-inserted into the text or tied directly

to the previous word. One of the interesting things about Greek is it has only one

article. English uses both the indefinite article “a” and the definite article “the”,

likewise French uses both “la” and “une”, but in Koiné Greek there is no such

distinction. Another interesting (and common) Greek construction uses the article

followed by a participle. An example can be found in John 3:16 which is quoted

in Section 3.1.1 above. In this text “ὁ πισvτεύων” is generally rendered “the [one]

believing” and the article is used to allow the verb to be used as a noun.5 Similarly,

“ὁ μὴ πισvτεύων” (the [one] not believing) is also a very common construction—

in fact these two phrases are contrasted in 1 John 5:10. The two words “ὁ μὴ”

(the not) occurs 83 times in the New Testament and this is almost always followed

by a participle. This is the type of information which would be sacrificed if the

article were dropped when the suffix array is sorted, but perhaps this information

5I translated the text “πᾶς ὁ πισvτεύων” as “all those believing” because I wanted to keep the
participle in English but “all the [ones] believing” is a little more awkward.

60

is already sacrificed because the sorted information only makes use of the lexical

form. The text above is basically converted to “ὁ πισvτεύων” (the [one] believing)

into “ὁ πισvτεύω” (the I believe). The precision of the phrase is sacrificed in order to

create more matches.

The most common two word phrase is almost as useless. It’s “καί ὁ” (and the).

It has 1582 occurrences and perhaps the most important thing it shows is the impor-

tance of manually discerning which phrases are important, as we will in Section 3.2.5.

The most common three word phrase in the New Testament is somewhat in-

teresting because it’s the way the authors of the gospels typically introduce Jesus’

response to various questions. The phrase is “καί εἶπεν αὐτῷ” which means “and he

said to him”. This phrase occurs 167 times mostly in the gospels with the occasional

reference in Acts and Revelation. Once again, the results are changed because of the

way the morphology of the words is ignored. The phrase “καὶ λέγει αὐτοῖς” (and he

says to them) counts towards the 167 references despite being in the present tense

and having a plural object. Likewise, the phrase “καὶ λέγουσvιν αὐτῇ” (and they

say to her) is included despite having a plural form of the verb “λέγω” (I say) and

despite having a feminine object. It’s interesting to note that the object is always in

the dative form (i.e. “αὐτῷ” which means “to him”) rather than the accusative or

nominative form (i.e. “αὐτός” which means “he”). This has nothing to do with the

search algorithm—to which both phrases appear to be identical—and everything

to do with Koiné Greek grammar. The verb “λέγω” always takes its object in the

dative case in the same way that the verb “to say” in English requires the auxiliary

particle “to” in order for it to have an object who hears what’s said. In English, we

say something to somebody because if we say somebody it sounds as if somebody

is something which is spoken rather than someone who listens. The same thing is

accomplished in Koiné Greek by putting the object into the dative case.

The most common four word phrase is probably the first phrase with literary

significance. It is “ὁ υἱὸς τοῦ ἀνθρώπου” (the son of man) which is the most common

way Jesus referred to himself. Jesus was not the first person to use the designation,

61

it occurs a few times in Psalms and extremely frequently in the writings of the

prophet Ezekiel. In the New testament, the phrase is used 77 times, and all but two

of these occurrences is from one of the Gospels which is no surprise because these

are the books where one would expect Jesus to refer to himself. The exceptions are

also interesting. The first is in Acts 7:56 while Stephen was being stoned to death:

“καὶ εἶπεν ἰδοὺ θεωρῶ τοὺς οὐρανοὺς διηνοιγμένους καὶ τὸν υἱὸν τοῦ ἀνθρώπου ἐκ

δεξιῶν ἑσvτῶτα τοῦ θεοῦ” (and he said, “Look! I see heaven opened and the son of

man standing at the right hand of God”). The other exception is in Eph 3:5 where

Paul refers to mysteries that “τοῖς υἱοῖς τῶν ἀνθρώπων” (the sons of men) from other

generations did not know. This is the only time in the New Testament that this

phrase doesn’t refer to Jesus, and also the only time it’s used in the plural.

The most common five word phrase occurs only in the Epistles, especially in the

writings of Paul. The previous phrase is the way Jesus referred to him self, and this

is one way in which other people referred to him: “ὁ κύριος ἡμῶν Ἰησvοῦς Χρισvτὸς”

(our lord Jesus Christ). The phrase occurs 36 times in the New Testament.

There are a couple six word phrases which occur eight times in the New Testament.

One is the phrase, “εἰς τοὺς αἰῶνας τῶν αἰώνων ἀμήν” (“truly forever and ever,” lit-

erally “into the ages of ages amen”). The Greek word “αἰών” is the etymology of the

English word, “eon”. It was written primarily in non-Pauline epistles. The shorter

phrase, “εἰς τὸν αἰῶνα” (literally “into the age”) occurs 35 times including the eight

references mentioned above, and it was used throughout the Gospels and Epistles.

This is the first term which is a Koiné Greek idiom—this is the way they said for-

ever. The longer term simply emphasized the fact that it was really forever and ever

rather than specifying a longer period of time in the same way that “forever and

ever” is not a longer period of time than “forever”. This is also the first time we’ve

stumbled across an idiom, and it shows that the Suffix Array is useful for bringing

such phrases together even though some human intervention is required to bring

them to the forefront.

The most common seven, eight, nine, ten, eleven, and twelve word phrases all

62

occur in the greetings at the beginning of Paul’s Epistles. The suffix array does

not distinguish between a “full” match and a “partial” match which means that

any three word phrase also contains two two word phrases: one with the first and

second word and one with the second and third. This is why this one phrase occurs

so many times. The greeting is this: “χάρις ὑμῖν καὶ εἰρήνη ἀπὸ θεοῦ πατρὸς ἡμῶν

καὶ κυρίου Ἰησvοῦ Χρισvτοῦ” (grace to you and peace from God our father and lord

Jesus Christ). This same greeting occurs eight times in the New Testament. In his

letter to the Colossians, Paul interjected the word “εὐ῝ριστιῦμεν” (we give thanks)

which is enough of a change to ensure that the matches with nine or more words in

common only occur seven times in the Suffix Array. It’s easy for a person to see the

similarity by browsing through the Suffix Array, but it’s more difficult for a computer

to calculate the difference. One possible solution was proposed in Section 2.2 and

another will be explored in Section 3.3. Also, the Greetings in 2 Corinthians and

in Ephesians actually have 24 words in common because they continue in the same

way after this phrase.

The longest phrase which is duplicated word-for-word is a 41 word phrase that

occurs in both Acts 28:26 and Mat 13:14. Both Jesus and the apostle Paul apply

Isaiah 6:9-10 to the people who are unable or unwilling to receive their message.

They say “ἀκοῇ ἀκούσvετε καὶ οὐ μὴ σvυνῆτε καὶ βλέποντες βλέψετε καὶ οὐ μὴ ἴδητε

ἐπαχύνθη γὰρ ἡ καρδία τοῦ λαοῦ τούτου καὶ τοῖς ὠσvὶν βαρέως ἤκουσvαν καὶ τοὺς

ὀφθαλμοὺς αὐτῶν ἐκάμμυσvαν μήποτε ἴδωσvιν τοῖς ὀφθαλμοῖς καὶ τοῖς ὠσvὶν ἀκούσvωσvιν

καὶ τῇ καρδίᾳ σvυνῶσvιν καὶ ἐπισvτρέψωσvιν καὶ ἰάσvομαι αὐτού” (By hearing you will

hear, but you will not understand; by seeing you will see, but you will not recognize.

For the heart of this people has become dull, and their ears barely hear and they

have closed their eyes. Otherwise they would have seen with [their] eyes and heard

with [their] ears and understood with [their] hearts and repented and I would heal

them.) It is fascinating to notice that this, the longest repeated phrase, consists

of only 41 words. One would expect that a longer Old Testament quotation would

have been chosen by multiple New Testament authors. This is because the New

63

Testament authors usually quote fairly short passages and because there are often

subtle differences between the passage which is quoted and the Septuagint (i.e. the

Ancient Greek translation of the Hebrew Old Testament). Perhaps this is because

New Testament authors often quote from memory or because they remember the

original Hebrew form.

3.2.5 Interesting Phrases in the Greek New Testament

As we have seen in Section 3.2.4, looking at the most used phrases in a document is

an interesting exercise, but it often does not uncover extremely useful information

especially with short phrases. It would be better to find all the common idioms or

find passages which are related to each other (as we will in Section 3.3). Nonetheless,

it is important to look at this type of information because it serves as a building

block. In this section, instead of looking only at the very most common phrases

which are a given length, I look at some of the most interesting phrases chosen from

the top contenders. This will help show what type of information a suffix array will

bring to the forefront.

Interesting Two Word Phrases

One interesting two word phrase which is most common (among interesting phrases)

is “λέγει αὐτῷ” (he says to him). Often this occurs in a different tense or number,

such as “εἶπεν αὐτοῖς” (he said to them), but these both have the same root word

and therefore they appear in the suffix array together. The construction occurs 483

times. The phrase occurs almost entirely in the gospels and Acts because these are

the narrative books where one would expect people to be saying things to people.

What makes this example particularly interesting is the concept of how much time

could be saved if a human translator only had to translate the phrase a few of the

483 times it occurs. This is very similar to the phrase “λέγω ὑμῖν” (I say to you)

which occurs 185 times. One interesting thing about reading through the suffix

array at this point is how often the same words follow this phrase. There are 53

64

examples of the phrase “λέγω ὑμῖν ὅτι” (I say to you that), 14 examples of “λέγω

ὑμῖν οὐκ” (I say to you not), and 10 examples of “λέγω σvοι ἐὰν” (I say to you if).

The fact that the two word phrase is followed by one of these words over 40% of

the time helps explains why a suffix array can be used as the basis of a compression

algorithm (See section 1.5.3). The phrase “λέγοντες ὅτι” (saying that) also occurs

105 and the similar phrase “λέγω ὑμῖν ὅτι” (I say to you that) occurs 52 times. (The

fact that these two phrases need to be counted separately shows one limitation with

suffix arrays which it may be possible to combat using the techniques described in

Section 2.2.)6 A couple of these examples show some of the subtleties of Koiné Greek

grammar. In English, when we say that something happens the word “that” implies

that we are summarizing something in our own words whereas in Koiné Greek it is

also proper to use “ὅτι” to introduce a direct quotation and this helps explain why

the construction is so common. Also, in English it would be difficult to construct

a sentence with the phrase “λέγω ὑμῖν οὐκ” (I say to you not), but Koiné Greek

has a far more fluid word order which is similar to Russian. In Greek it is quite

proper to begin a sentence with a verb and it is also quite proper to negate this

verb—this construction puts emphasis on the verb and the fact that it’s negated.

A suffix array is a useful tool partially because it brings these type of grammatical

subtleties together.

Another two word phrase which is especially interesting to those who don’t know

Koiné Greek is “ὁ Ἰησvοῦς” (literally the Jesus). It’s interesting because in Koiné

Greek proper nouns usually use the article. This may be partially because the

morphology of a proper noun is often less extensive than other words, but it’s easy

to figure out the case of a proper noun (or any noun) using the article. For example,

the dative case “τῷ Ἰησvοῦ” (to Jesus) differs from the genitive case “τοῦ Ἰησvοῦ”

(of Jesus) only because of the article. The pair of words occurs 406 times in the

New Testament. On a similar note, the two word phrase “Ἰησvοῦς Χρισvτός” occurs

134 times whereas “Χρισvτὸς Ἰησvοῦς” only occurs 95 times. It is important to realize

6The two other related phrases, “οἴδατε ὅτι” and “γινώσvκετε ὅτι” which both mean “you know
that” occur 87 and 42 times respectively.

65

that though these two phrases are almost identical, they appear in entirely different

places in the suffix array because of the subtle difference in word order. It may

be possible to use the approximate matching concepts introduced in Section 2.2 in

order to overcome this limitation by ensuring that various mutations of the text also

enter the suffix array, and the cross-referencing mechanisms in Section 3.3 overcome

the problem with a more brute-force approach: if every word in every sentence is

analyzed, then the order they appear in becomes less important.

Some languages use a pair of words which are usually translated as one word

in a different language. One example of this is the two word phrase “εἰ μὴ” which

literally means “if not” but is almost always translated “except”. The pair of words

occur 85 times in the New Testament and these all occur in the same place in the

suffix array. It is quite common to use groups of words together in order to create

better translations, and this type of phrase is precisely why the technique works. A

suffix array would help even further because it ensures that all of these groups of

words and their corresponding translations could be seen together.

Different languages have different ways of interpreting a double negative. The

English phrase “you don’t know nothing” means technically something different than

what is generally meant with colloquial usage, and this is the type of fallacy that it’s

easy for programmers and logicians to recognize. The Koiné Greek usage is probably

best illustrated in John 11:49: “Καϊάφας, ἀρχιερεὺς ὢν τοῦ ἐνιαυτοῦ ἐκείνου, εἶπεν

αὐτοῖς, Ὑμεῖς οὐκ οἴδατε οὐδέν” (literally, Caiaphas, who was the high priest that

year, said to them, “You don’t know nothing!”). This shows that in Greek instead of

one negative canceling another, they accumulate to form an even stronger negative.

The most common example is a two word phrase “οὐ μὴ” built from two different

forms of the word “not”. In English, this is translated “absolutely not”. English

requires a positive to reinforce the negative because two negatives would cancel each

other. By using a suffix array to search for the first and last occurrence of “οὐ μὴ”,

one can quickly see that it is used 93 times in the New Testament.

66

Common Objects for Possessive Pronouns

There are several two word phrases which occur very frequently that all use a posses-

sive pronoun (Koiné Greek actually uses a pronoun in the genitive case for this func-

tion). These phrases indicate ownership of something, and several somethings are

extremely common which is why these come up as common two-word phrases in the

suffix array. Two interesting phrases are “πατρός μου” (my father) and “πατέρα σvου”

(your father) which occur 102 times and 43 times respectively. The number and case

of each pronoun is removed with the parsing information, but the 1st, 2nd, and 3rd

person is preserved. For example, “ἡμῖν” (us) becomes “ἐγώ” (I) for the purpose of

the sorting routine whereas “σvου” (your sg.) becomes “σvύ” (you). This is why there

are two separate entries for “πατρός μου” (my father) and “πατέρα σvου” (your fa-

ther). The interesting thing is that both phrases usually refer to God. For example,

Jesus repeatedly used the phrase “πατὴρ ὑμῶν τῷ ἐν τοῖς οὐρανοῖς” (your father who

is in heaven) in the sermon on the mount (Mat 5-6) and these instances are all

grouped together in the suffix array. The usage of “πατρός μου” (my father) is very

similar, and even to the point that the phrase “πάτερ ἡμῶν ὁ ἐν τοῖς οὐρανοῖς” (our

father in heaven) is quite common.7

The next most common phrase of this type is “μαθηταὶ αὐτοῦ” (his disciples)

which is used 115 times almost entirely in the Gospels. All but six of these times,

the phrase begins with an article which also makes it a very common three word

phrase (see page 70). The phrase almost always refers to the disciples of Christ,

though a few times it refers to the disciples of John the baptist (e.g. Luke 11:1;

Mat 11:2), and in Acts it refers to the disciples of Paul (Acts 9:25). In the other

instance in Acts 14:20, the case of the words is different “κυκλωσvάντων δὲ τῶν

μαθητῶν αὐτὸν” (but the disciples gathering around him). In this case “αὐτὸν”

(him) still refers to Paul, but because its in the accusative case (him) rather than

the genitive (of him/his) these are not necessarily disciples of Paul. This is one

example where totally ignoring the case of the nouns and conjugation of the verbs

7In fact, this is God is addressed in the Lord’s prayer, which may be the most famous prayer
ever made (Mat 6:9).

67

created a match which may be slightly detrimental. Perhaps it’s possible to create

a system which prefers precise matches but allows any other as well.

Another common phrase is “κύριος ἡμῶν” (our lord) which occurs 88 times in

the New Testament. In case you’re curious, the Koiné Greek word “κύριος” can be

translated as sir, lord, or master. In the cases where the word is typically translated

“sir”, “κύριος” is used as a formal greeting such as when the Samaritan woman

(who had a relatively social status as a Samaritan woman) first spoke to Jesus

(who had a higher status as a Jewish man) before he said who he was (John 4:11).

But the full phrase “κύριός μου” (my master) typically refers to a master/slave

relationship, which is how Jesus used the phrase in the parable of the shrewd steward

(Luke 16:5). This is one case where consistently translating this two word phrase

“κύριός μου” as “my master” will help distinguish between when the word should be

translated “master” and “sir”. One particularly common use of this phrase in the

New Testament is “ὁ κύριος ἡμῶν Ἰησvοῦς Χρισvτὸς” (our lord Jesus Christ). The full

phrase occurs 38 times in the New Testament and an additional 11 times without

the word “Χρισvτὸς” (Christ)—more than half of all of the occurrences of the two

word phrase. Once again, the suffix array brought all of these references together.

Every instance of the full phrase is from the Epistles or Acts which shows that the

apostles looked at their relationship to Jesus at least partially as a master/slave

relationship.8

One of the most interesting phrases that falls into this category is “χειρὸς αὐτοῦ”

(his hand). Although this commonly refers to someone holding something in his

hand or stretching out his hand, it also refers to two Koiné Greek idioms (which are

occasionally found in other languages too). The first sense is expressed well by a

phrase in Luke 21:12: “ἐπιβαλοῦσvιν ἐφ΄ ὑμᾶς τὰς χεῖρας αὐτῶν” (they will lay their

hands on you). Here, the concept of “χεῖρες αὐτῶν” (their hands) refers to someone

8This is confirmed in Rom 1:1 where Paul identifies himself as, “Παῦλος δοῦλος Χρισvτοῦ Ἰησvοῦ”
(Paul, a slave of Christ Jesus). Many English translations translate “δοῦλος” as “servant” instead
of “slave”; possibly because slaves in Roman times were usually treated much better than slaves
in the Southern U. S. in the 19th century. Some translations including New King James and New
American Standard use the term “bond-servant”, and Holman Christian Standard does use the
literal translation “slave”.

68

having physical control over someone else. Another common use of this phrase is

“ἐξέφυγον τὰς χεῖρας αὐτοῦ” (I escaped his hands) such as when Paul was lowered in

a basket to escape the Governor Damascus (2 Cor 11:13). In both cases, the idiom

is used to express the idea of a person with power seizing someone else. The phrase

is also used to express someone’s actions. In particular, sometimes something is

done “διὰ τῶν χειρῶν αὐτοῦ” (through his hands), though the precise construction

beginning with “διὰ” (through) is found eight times in the New Testament, three

times with the article and five times without (e.g. Mark 6:2; Acts 7:25). Because of

the subtle difference with the article these occur in two slightly different positions

in the suffix array, perhaps this shows that it is difficult to find Koiné Greek idioms

without searching for groups of words at an extremely fine level. It may also show

good reason for omitting the article entirely (as suggested on page 60). Fortunately,

during the work of translation, the suffix array could still be used to refer a translator

to the previous times he’s translated the same idiom. It would even be possible to

do this automatically.

The Prepositional Phrase

Prepositions are often the most difficult words to master in a new language because

the same word is used in many different situations and every language seems to

have its own rules regarding which word is used in which situation. However a

suffix array can be used to bring prepositional phrases together. Koiné Greek is

particularly difficult because the meaning of the preposition varies depending on

the case of word it modifies. For example, “κατὰ τὸν Παῦλον” means according

to Paul because Paul is in the accusative case whereas “κατὰ τοῦ Παύλου” means

“against Paul” because Paul is in the genitive case.9

The wonderful thing about a suffix array is it brings all phrases beginning with

the same word together, and this can be particularly useful for observing all of the

9An example of the latter can be found in Acts 25:2 where charges are brought against Paul,
and the former can be found in Acts 25:14 where Paul’s case is described as “τὰ κατὰ τὸν Παῦλον”
(literally that [which is] according to Paul).

69

different ways in which a particular preposition is used. For example, the Koiné

Greek term “ἐν σvοὶ” (in you) is used 108 times in the New Testament. The phrase

is used primarily to describe various intangible things which can be found in a

person. The word “εἰς” (into) is particularly interesting. It is possible to go “εἰς τὰ

ὅρια” (into a house) which is used 50 times, “εἰς τὸν οὐρανὸν” (into heaven) which

is used 23 times, or “εἰς τὸ ὄρος” (into a mountain) which is used 20 times. If this

suffix array were of an English text, one would be more likely to go “into a house”,

go ”to heaven”, and go “up a mountain”. In the New Testament, one often finds

“ἐπίσvτευσvαν εἰς αὐτόν” (they believe into him) and here “εἰς” (into) functions as

a particle which is typically translated as “in” in English. The two word phrase

“πισvτεύεω εἰς” (I believe in) occurs 42 times in the New Testament. The fact that

there are so many different ways to translate one preposition illustrates the difficulty

of translating this type of phrase, and it also shows how a suffix array can be used

as a building block for translation. The structure brings all of the nouns which are

commonly associated with a given preposition to the same place and this allows an

automatic translation system to search for an appropriate preposition very quickly.

Longer Phrases and Idioms

Many of the most common three word phrases are not interesting at all, except as a

warning of what pitfalls to avoid. These phrases include “ὁ θεὸς ὁ” (the God the)

and “ὁ θεὸς καὶ” (the God and) which are both occur in the New Testament roughly

130 times. As mentioned on page 67, the phrase “οἱ μαθηταὶ αὐτοῦ” (his disciples)

is used 108 times in the New Testament. Many of the most interesting three word

phrases are interesting four word phrases without the article.

One such four word phrase is “ὁ υἱὸς τοῦ θεοῦ” (the son of God). This phrase

occurs 27 times as a four word phrase with the article and an additional four times

without. It’s also used an additional ten times as a two word phrase, without

any article at all (e.g. Rom 1:4). Its usage is spread throughout the gospels and

epistles, and the phrase almost always refers to Jesus Christ (e.g. John 20:31 ex-

70

ception Rom 8:19). The fact that this phrase occurs in three different forms which

vary only based on the article is good evidence it may be able to obtain more useful

results in Koiné Greek if the article were dropped altogether. This concept was

discussed previously on page 60.

There is one four word phrase which occurs only 24 times in the New Testament.

The most fascinating thing is that every one of these occurrences is found in the

gospel of John! It is the phrase “ἀμὴν ἀμὴν λέγω ὑμῖν” (truly truly I say to you).

In fact when I first learned Koiné Greek and started reading the gospel of John

because it’s written using simple language, I quickly noticed how often this phrase

repeated partially by how I could read the phrase so much faster than the rest of

the text. It would be nice if a computer assisted translation system could perform

a similar function if the text were translated into a new language as discussed on

page 88. In this gospel, and only in this gospel, Jesus uses this phrase to introduce

something important that he’s about to say. A computer assisted translation system

could quickly learn this phrase and speed up the translation of this one book. A

similar phrase “εἶπεν αὐτῷ ὁ Ἰησvοῦς” (Jesus said to him) is found in all four gospels.

The interesting thing about this phrase is that the subject “ὁ Ἰησvοῦς” (Jesus) never

changes, but the tense of the verb and the object change substantially. This is one

time when finding the root of each word really makes a difference. Sometimes the

aorist tense “εἶπεν” (he said) is used, and other times the present tense “λέγει”

(he says) is used. Although the object is always in the dative case, sometimes

it’s masculine “αὐτῷ” (to him), sometimes it’s feminine “αὐτῇ” (to her), and quite

often it’s plural “αὐτοῖς” (to them). In the case of a word study or cross-referencing

system, making these phrases identical is a really good idea. In the case of computer

assisted translation, each of these phrases would usually be translated somewhat

differently, but the way the different phrases are translated could have an impact

on each other. Perhaps the best mechanism would be to use the suffix array for

the lexical form of each word as I have done, but find similar phrases by using the

parsing data which is loaded with each word. This is discussed further on page 85.

71

There is one four word phrase which is often considered the key of what the

synoptic gospels are about. In the book of Matthew, this is almost always referred

to as “ἡ βασvιλεία τῶν οὐρανῶν” (the kingdom of heaven), whereas in the other books

of the bible it is called “ἡ βασvιλεία τοῦ θεοῦ”. The first phrase is used 31 times—

exclusively in the book of Matthew—and the second phrase is used 64 times in the

New Testament. The phrase “εἰς τὴν βασvιλείαν τοῦ θεοῦ” (into the kingdom of God)

is used 15 times along with its counterpart “εἰς τὴν βασvιλείαν τῶν οὐρανῶν” (into the

kingdom of heaven). In one way, this is nothing new because biblical scholars have

known about this for a great deal of time, but it is interesting to see how the suffix

array brings this phrase to the forefront. Once again, automatically translating

such a long phrase after the first instance is translated manually could speed up the

translation process and improve the consistency of the final product.

There are very few long phrases which occur more than a couple times. The most

interesting of these is Paul’s greeting in his letters which was discussed previously

on page 62. One additional nine word phrase: “ἐκεῖ ἔσvται ὁ κλαυθμὸς καὶ ὁ βρυγμὸς

τῶν ὀδόντων” (where there will be weeping and gnashing of teeth). This is how

Jesus often refers to “γέεννα” (Gehenna, hell).10 The phrase occurs six times in the

book of Matthew and once in the book of Luke. Elsewhere, the term “κλαυθμός”

(weeping) is used when people will never see each other again, such as when Paul left

Ephesus or children are killed (Acts 20:37; Mat 2:18) whereas the term “βρυγμὸς”

(gnashing) seems to be restricted to this one phrase. Once again, this shows the

usefulness of using relatively long phrases to assist in translating a single document

because the translator would only need to look up these words the first time he

translated the phrase. The next time the entire phrase would be available to him.

The final long phrase is a 10 word phrase which is repeated nine times in the

first three chapters of the Revelation of John but occurs nowhere else in the New

Testament. It’s the statement: “ρο ἔχων οὖς ἀκουσvάτω τί τὸ πνεῦμα λέγει ταῖς

10Gehenna, also known as the Valley of Hinnom, is a place outside of Jerusalem that was used
as a garbage dump. It is also the place where some of the people of Judah, including some kings,
would sacrifice their children to the god Molech (2 Chr 28:3, 33:6; Jer 7:31, 19:2-6).

72

ἐκκλησvίαις” (the [one] having ears, let him hear what the spirit says to the churches).

This is another phrase that John repeats so often in a small text that it’s obvious

to the reader without the use of a suffix array! In the beginning of Revelation, John

is writing to seven churches, and he uses this phrase partially as a way to introduce

each church and partially to separate them from each other. The fact that such

a long phrase can occur in just a few chapters shows that sometimes a computer

assisted translation could be useful without a previous corpus even in some of the

shortest documents.

3.3 Cross-Referencing the Greek New Testament

If a thesis can have a climax, then this is probably it. This is the place where a

suffix array is applied rather than studied. (Unlike most good literature, however,

Section 4.2 is almost like a second climax in the middle of the dénouement.) By

creating a meaningful cross-reference for the New Testament in just 10 seconds on

a 1.2GHz computer, I believe I have done something which has seldom (if ever)

been done before. Although this type of speed is not necessary for creating cross-

references in a small corpus such as the Koiné Greek New Testament. As mentioned

on page 86, this technique could be applied to a much wider corpus than just the New

Testament. It could be used on all Koiné Greek works, modern legal documents, or

even E-mail spam.

3.3.1 What the Algorithm Does

Often when a person is reading something, they find that it reminds them of some-

thing else. This is why this thesis contains many cross-references within itself.

Pastors and biblical scholars have often used this type of tool to study the New

Testament, and many Bibles are printed with a column devoted to cross-references

of the text. Perhaps the simplest example of how useful this can be comes from

73

studying the four gospels which each give a slightly different account of Jesus’ life.

Many of the stories from one gospel are also found in another, but they usually do

not occur in the same sequence and they can contain subtle differences or emphases.

This is likely due to the fact that most of these stories condense the events from an

entire day into a few short paragraphs, and different people will have slightly dif-

ferent memories from the same day. Because of this, it is very useful to find where

the events from one gospel is repeated in another, and we find in Section 3.3.3 that

this algorithm does just that.

3.3.2 How the Algorithm Works

The best way to create a cross-reference of the New Testament would be to start

with a single verse which I will call the reference point. Although the reference

point can change, it doesn’t change extremely often. This verse would serve as a

home base or an anchor to which all other verses in the New Testament would be

tested. One could then read through the rest of the New Testament reflecting on

the impact and similarities between the verse serving as the reference point and the

verse currently being read. I will call the verse currently being read the test point.

The test point is a fleeting thing which changes to the next test point as soon as the

previous one is considered. If any similarity is found between the reference point

and a particular test point, then a cross-reference can be created which will link

these two verses. By treating every verse as a reference point once, and scanning

through the rest of the verses as test points each time, every verse can be compared

to every other verse. Eventually one would create a very good cross-reference of

the entire New Testament. Each time a new verse is chosen as a reference point is

chosen, the process of finding the best test point would begin anew.

Unfortunately, this would take a prohibitively long time for a person to do man-

ually because it is an O(n2) algorithm which takes four times as much effort for

twice as much data. For example, if there were just 10 verses to cross-reference,

one could generate a cross-reference using this technique by reading through each

74

of these verses 10 times, so 100 verses would need to be read. In reality, only half

this many verses would need to be read because in the first pass the reference point

would be verse 1 and the nine other verses would serve as test points. In the second

pass verse 2 would not have to be compared to verse 1 because the comparison was

already made when verse 1 was the reference point. However it may still be a good

idea to use verse 2 as a reference point because this could achieve different results.

What if the first part of verse 2 is somewhat close to the first part of verse 1, but

the second part of verse 1 is almost identical to verse 4? In this case Verse 1 would

refer to verse 4 and Verse 2 would refer to verse 1. Because there are 7942 verses in

the New Testament, this technique would require reading 63 million verses to create

a full cross-reference.

Using a computer to compare 63 million verses is not prohibitively complex, but

it wouldn’t be particularly fast either. In order to create my cross-referencing system

I use a suffix array to speed up the process. Although technically I cannot prove

that the mechanism is any faster than O(n2), practically it is more than fast enough

to do the job. The speed at which it operates depends on how many common words

are in the vocabulary. For the New Testament, it took just 10 seconds to reference

the Koiné Greek New Testament on a relatively slow 1.2GHz Pentium 4M computer.

Because 3.5 seconds was spent generating the suffix array, it took 6.5 seconds to run

through this algorithm.

The only way for a computer to figure out if two things are similar (without using

a thesaurus or creating a terribly complex semantic model) is to look for common

words and common phrases. Fortunately, as we have just seen is Section 3.2.5, the

suffix array brings all common words and phrases together to the same spot. I

exploited this property of the suffix array to compare a reference point with every

possible test point while ignoring the impossible ones. The biggest thing the suffix

array allowed me to do is avoid searching through test points which in fact had no

words in common at all.11 This is the key to this method of creating cross-references.

11On a technical side, this required creating a reverse index. By definition, a suffix array would
index the position in a text where a word or phrase is found, but I also needed a reverse index to

75

I created a procedure that searched the suffix array to find the verse (i.e. the best

test point) with the most words and phrases in common with the current verse (i.e.

the reference point).

I will now consider the problem of comparing a single verse (the reference point)

with all other verses in the New Testament (each test point). This is done by

maintaining a score between the reference point and every possible test point. This

could be done using various data structures to store the current list of verses that

have been tested, but I chose to use a slightly different approach. I created a data

structure with an entry for every verse in the New Testament and each one of

these entries had a number which represented the current score, sort of a running

tally, for the similarity between the reference point and the test point. Whenever

a new word or phrase was found between the two verses, the corresponding score

was increased by the appropriate value. I also kept three variables which held the

verse number and the score of the current top three contenders. These variables

were update whenever a the score between the reference point and a particular test

point became greater than one of the other top three contenders. When all of the

comparisons were done, these three variables held the value of the three best cross-

references between the verse being compared (the reference point) and every other

verse in the New Testament (the top three Test Points).

Someone with a background in computer science will quickly realize that main-

taining a record of the score corresponding to every verse in the New Testament

can be computationally expensive. The simplest way I overcame this problem is by

updating the reference and value of the top three verses (i.e. test points) on the

fly. This meant that I didn’t have to look a second time at a test point that only

had one fairly poor match with the reference point. But because I wouldn’t look

at this reference point again, the data structure storing all of the potential scores

become corrupted with irrelevant information. Instead of clearing the data structure

find where a word is found in the suffix array. Fortunately, I had already generated this reverse
index when I implement the Longest Common Prefix (LCP) algorithm created by Toru Kasai et
al. [18]. The LCP is described in Section 1.7.

76

after each reference point was tested, I created a second field associated with each

verse that kept track of whether a particular score was outdated.12 Whenever a new

reference point was chosen, a number would be incremented. Whenever informa-

tion about a test point had an outdated number, it would be ignored. This simple

mechanism allowed me to avoid the cost associated with a more complicated data

structure and avoid the cost associated with clearing such a large data structure.

The data structure which contained the current scores only had to be reset once at

the beginning of the program and again whenever the “outdated” field was about

to overflow (after a few billion reference points had been considered).

Comparing Individual Words and Phrases

The reader may now wish to refresh his or her memory about what the suffix array

looks like by referring back to Figure 3.1 on page 56 because this will be helpful

in understanding how the suffix array finds common words and phrases between a

reference point and a particular test point. The first word of the reference point is

considered first, and therefore the position of this word is found in the suffix array.

At this point, there is also a value for the Longest Common Prefix (LCP) which

represents the longest phrase this has in common with the verse at the previous

position in the suffix array. If the LCP is zero, then there are no words in common,

if it’s one there’s one word in common, etc. Let’s say that the LCP is 2, so there is

a two word phrase at the beginning of this verse (the reference point) that is shared

with another verse (the test point). Because of this common phrase, the current

score for the test point is increased by the appropriate amount for this pair of shared

words. Because this is the only verse that has any score at all, it will also become

one of the top three closest verses because these top scores are zeroed whenever a

new reference point is considered.

The next step is a little interesting. Let’s say that the LCP of the current test

point is 1. This means that though the reference point and the current test point

12This was done as a separate field in the same array so that only one cache miss would occur
whenever both pieces of data were referenced (see Section 1.5.4).

77

have two words in common, the reference point and the next test point has only one

word in common. The test point is then updated, and the score for the verse at the

new test point is increased by the appropriate amount for one word in common.

Now for the tricky case. Let’s say that the LCP at the new test point is 10. This

means that this verse shares a ten word phrase in common with the previous verse

in the suffix array. However it does not mean that either of these test verses have

a ten word phrase in common with the reference point. The reason for this and an

example was described in Section 3.2.2. Instead, the newest test point still has just

one word in common with the reference point, and so the verse associated with this

place in the suffix array is increased by the appropriate amount. Let’s say the LCP

at this final test point is 0, which indicates that there are no more words in common

in this direction.

This same process must be repeated going down the suffix array because usu-

ally there will be shared words in both directions. Finally, the entire process must

be repeated for every word in verse at the reference point, first searching up, then

searching down the suffix array. This will ensure that any verse that has any sig-

nificant word in common will be checked, even though the process will consider far

less data than the entire New Testament.

About the Fuzzy-Logic

I came up with a very simple fuzzy-logic system to score various matches. Although

I believe the basic system is sound because I have proved this in Section 3.3.3, I

also think that it could be improved substantially by tweaking the numbers. A

normal logic system deals with true and false values. All or nothing. Zero or one.

A traditional fuzzy-logic system allows for some ambiguity by allowing any fraction

somewhere between 0.0 and 1.0 so 0.5 could be used to represent a 50%–50% chance.

I opted to use integer arithmetic instead because the numbers use less space and it

is substantially faster on many platforms. It may be better to convert this into a

floating-point system (one that allows decimal places to be used) before trying to

78

tweak the performance.

I first started by coming up with a score for every word. This was based on how

unique it was in the Koiné Greek New Testament. The words were counted as the

data was being loaded. Any word used many thousands of times such as “ρο” (the)

and “καί” (and) were given a score of 0 because they weren’t interesting at all. This

also allowed the process of finding new test points for a particular reference point to

be aborted when two verses shared only uninteresting words, and this saved a great

deal of time. The more unusual a word was, the more its score was. For example, if

a word which is only used a few times in the New Testament, it would have a score

of 100, but if it was used several hundred times it would have a score of 6. The

precise curve I created could probably be tweaked for optimal performance, but the

results show that the general idea is quite sound.

In addition to this, I put a very substantial weight on having phrases in common.

If a two word phrase were being considered, each word in the phrase was counted at

twice the normal value. For example, if the phrase were “ὁ κλαυθμὸς” (the weeping),

then the first word “ὁ” (the) would normally carry no value, but the second word

“κλαυθμός” (weeping) would normally have a value of 100. However the phrase

would count as 200 because a two word phrase is counted at twice the value. In

addition to this, the next word in the verse to be considered would be “κλαυθμός”

(weeping) which would match the same set of verses with an additional weight of

100. This double-counting is much easier to try to compensate for rather than

remove, especially since counting the same pair of verses multiple times is precisely

what this cross-referencing system is all about. However I rather näıvely gave three

word phrases three times the weight, four word phrases four times and so on which

is almost definitely adding too much weight to longer phrases. These longer phrases

are also counted when some of the words occur after the end of the verses being

compared. Nonetheless, by using a suffix array, it is possible to allow a phrase of

several words to carry a much greater weight than individual words, and this is an

extremely powerful tool.

79

3.3.3 Whether the Algorithm Performed

As mentioned previously, the total time taken to calculate the cross-reference for

every verse in the Greek New Testament is 10 seconds on a Pentium 4M 1.2GHz

computer. It takes 3.5 seconds on the same computer just to calculate the suffix

array, therefore it takes about 6.5 seconds to create these cross references. It is easy

to see that the technique I’ve employed is fast with this type of data, but in this

section I will endeavor to prove that the results are also good. To do this, I will

look at some of the references which have a particularly high score.

There are a number of verses which this system found cross-references for across

all four gospels. This is a particularly interesting type of reference to check because

it is the most logical type of cross-reference one would expect. One such example

is Luke 3:4 which was cross-referenced to Mat 3:3, Mark 1:3, John 1:23. Perhaps

it is little surprise that this verse is actually a quotation from the prophet Isaiah

which all four gospels share: “ὡς γέγραπται ἐν βίβλῳ λόγων v̓Ησvαΐου τοῦ προφ ητου,

Φωνὴ βοῶντος ἐν τῇ ἐρήμῳ, v̔Ετοιμάσvατε τ`ην ὁδὸν κυρίου, εὐθείας ποιεῖτε τὰς τρίβους α

ςυτοῦ. . . ” (as written in the book of words of Isaiah the prophet: “The voice [of one]

shouting in the desert, ‘Prepare the way of the lord, make his path straight. . . ’ ”).

Although the precise introduction to this passage changes from gospel to gospel,

the quotation always refers to John the Baptist in all the gospels. The score for

cross-reference linking this verse from Luke to the gospel of John is 2811, whereas

the score linking it to the other two gospels is over 34000.

Another set of verses which scores relatively evenly across all four gospels is

Luke 22:39, John 8:1, Mat 26:30, and Mark 14:26. This scores about 2085 points

across all four gospels, and John’s gospel is the most succinct: “Ἰησvοῦς δὲ ἐπορεύθη

εἰς τὸ v̓́Ορος τῶν v̓Ελαιῶν.” (And Jesus went up the Mount of Olives).13 All four of

these verses involve a group of people going to the Mount of Olives, but the context

of the verses change. One interesting thing about this reference is that John 8:1

matches both Mat 21:1 and Mat 26:30 but doesn’t match Mark 14:26. This is an

13The astute reader will notice that this is a place where someone goes “εἰς τὸ ὄρος” (into a
mountain) as mentioned on page 3.2.5.

80

example of where a group of verses is not always referenced the same way in both

directions due to the short length of one of the verses in question (see page 75).

Another fascinating thing is that the verse referenced in John is at an entirely

different place in the narrative of Jesus as compared to the other three gospels. In

John 8:1, Jesus goes to the Mount of Olives to give his judgment to the woman

caught in adultery (though the most reliable manuscripts actually omit this story),

but in the other three gospels Jesus goes to the mount of olives to pray the night

before his trial (i.e. Good Friday). The fifth reference, Matthew 21:1, is the time

when Jesus first enters into Jerusalem from the Mount of Olives (i.e. Palm Sunday).

Reference Score New Testament Text

Mat 11:1 N/A καὶ ἐγένετο ὅτε ἐτέλεσvεν ὁ Ἰησvοῦς διατάσvσvων τοῖς δώδεκα μαθηταῖς αὐτοῦ,

μετέβη ἐκεῖθεν τοῦδιδάσvκειν καὶ κηρύσvσvειν ἐν ταῖς πόλεσvιν αὐτῶν.

And when Jesus finished teaching his twelve disciples,
he lead them from there to teach and preach in their cities.

Mat 13:53 2538 καὶ ἐγένετο ὅτε ἐτέλεσvεν ὁ Ἰησvοῦς τὰς παραβολὰς ταύτας,

μετῆρεν ἐκεῖθεν.

And when Jesus finished saying these parables,
he left from there.

Mat 26:1 2514 καὶ ἐγένετο ὅτε ἐτέλεσvεν ὁ Ἰησvοῦς πάντας τοὺς λόγους τούτους,

εἶπεν τοῖς μαθηταῖς αὐτοῦ. . .

And when Jesus finished all these words,
he said to his disciples. . .

Mat 7:28 2460 καὶ ἐγένετο ὅτε ἐτέλεσvεν ὁ Ἰησvοῦς τοὺς λόγους τούτους,

ἐξεπλήσvσvοντο οἱ ὄχλοι ἐπὶ τῇ διδαχῇ αὐτοῦ.

And when Jesus finished all these words,
the crowds were astounded by his teaching.

Figure 3.2: Three verses in Matthew which were cross-referenced to the first verse.

It is sometimes interesting the way references are created within the same book.

For example, Mat 11:1 is cross-referenced to Mat 13:53, Mat 26:1, and Mat 7:28.

By looking at Figure 3.2 it is fairly easy to see why. Each of these verses talks

about Jesus finishing in precisely the same way, and each time Jesus goes on to do

something else. (As an aside, I found it easier to translate all of these verses in

the same way because I could cut-and-paste the translation of the first part of each

sentence, so it is reasonable to assume that automatically bringing these similarities

81

to the attention of another translator would also make it easier for them.) This

shows how a single author often has a tendency to use the same phrase in the

same way over and over. Perhaps it would also be good to give priority to previous

translations of the same authors work both for computer assisted translation of the

New Testament and also for translating other documents. The scores also show an

abnormally heavy weight given to the six word phrase which is identical in all four

passages.

There is a set of verses which, according to the references, don’t seem to be

related at all at first glance. However once again, these verses all quote the same Old

Testament law. The verses are Mat 19:19, Gal 5:14, Mark 12:31, and James 2:8 which

quote Lev 19:18. The common thread in all of them is the phrase “ἀγαπήσvεις τὸν

πλησvίον σvου ὡς σvεαυτόν” (love your neighbor as yourself). A similar Old Testament

quotation can be found in Rom 4:3, James 2:23, Gal 3:6, and Rom 4:22 which all

cite the Old Testament passage Gen 15:6. The phrase is: “ v̓Επίσvτευσvεν δὲ v̓Αβραὰμ

τῷ θεῷ καὶ ἐλογίσvθη αὐτῷ εἰς δικαιοσvύνην.” (Abraham believed God and it was

credited to him as righteousness.) As I was looking through various translations

of the word “λογίζομαι” (I reckon, consider, look upon as, credit) I noticed that

the New American Standard Bible has a cross-reference between precisely the same

passages this program came up with. I also noticed that they translated the phrase

“credited to” in two instances and “reckoned to” the other two times. The New

American Standard is an incredibly good and incredibly accurate translation I’ve

used many times, but I find it interesting that they lacked consistency in this case.

There’s a common doxology in several passages of the New Testament which were

written by three different authors. The program cross-referenced 1 Pet 4:11 with

Rev 1:6, Rev 5:13, and Heb 13:21 because all of these verses contain the phrase: “διὰ

v̓Ιησvοῦ Χρισvτοῦ, ᾧ ἡ δόξα εἰς τοὺς αἰῶνας τῶν αἰώνων ἀμήν.” (through Jesus Christ,

to whom be glory forever and ever, amen.) It’s interesting that the two verses from

Revelation scored higher than Hebrews because Revelation is missing the first four

words from this phrase—the subject of both passages is given without using the

82

word Jesus Christ. Perhaps it’s simply because the verses in Revelation are longer,

and therefore have more opportunity to match other words.

Reference Score New Testament Text

Col 4:18 N/A v̔Ο ἀσvπασvμὸς τῇ ἐμῇ χειρὶ Παύλου. μνημονεύετέ μου τῶν δεσvμῶν. ἡ χάρις μεθ΄ ὑμῶν

The greeting of Paul in my hand. Remember my imprisonment. Grace be with you.

1 Thes 5:28 9888 v̔Η χάρις τοῦ κυρίου ἡμῶν v̓Ιησvοῦ Χρισvτοῦ μεθ΄ ὑμῶν.

The grace of our lord, Jesus Christ, be with you.

2 Thes 3:17 3516 v̔Ο ἀσvπασvμὸς τῇ ἐμῇ χειρὶ Παύλου, ὅ ἐσvτιν σvημεῖον ἐν πάσvῃ ἐπισvτολῇ· οὕτως γράφω.

The greeting of Paul in my hand, which is the sign in all letters; this is how I write.

1 Cor 16:21 3516 v̔Ο ἀσvπασvμὸς τῇ ἐμῇ χειρὶ Παύλου.

The greeting of Paul in my hand.

Figure 3.3: Three of Paul’s greeting which was cross-referenced to the first example.

Earlier, on page 62 we saw that Paul often used the same greeting in each of

his letters. The cross-referencing system also referenced one of his common closing

remarks when Col 4:18 was paired with 1 Thes 5:28, 2 Thes 3:17, and 1 Cor 16:21.

Different parts of the verse were matched together, as can be seen by looking at

Figure 3.3. It is fairly easy to see why each of these verses is similar; each one is

a greeting given by Paul at the end of his letter. The first two share one part of

Paul’s typical greeting, and the last two share another part. What is extremely

difficult to figure out, is why the references to Col 4:18 and 1 Thes 5:28 have a score

which is three times as high as the other verses when they only share two phrases in

common. The reason is that the second phrase is not, in fact, a two word phrase as

it looks, but it is actually a 21 word phrase. What is extremely odd about this 21

word phrase is not that it spans past the end of one verse into the next one, we’ve

seen this happen with the longest phrase in the suffix array on page 63. What is

uncommon about this phrase is that it spans past the end of the verse and into the

next book! Both of Paul’s letters to the Thessalonians start with the same sentence:

“Παῦλος καὶ Σιλουανὸς καὶ Τιμόθεος τῇ ἐκκλησvίᾳ Θεσvσvαλονικέων ἐν θεῷ πατρὶ καὶ

κυρίῳ Ἰησvοῦ Χρισvτῷ, χάρις ὑμῖν καὶ εἰρήνη.” (Paul and Silvanus and Timothy to the

church of Thessalonians in God our father and lord, Jesus Christ, Grace and peace

83

to you.) Because Colossians comes immediately before 1 Thessalonians, and the

first book before the second, this phrase was enough to make the difference between

a short match and a much much longer one. This shows that the system may need

a little tweaking, but it also proves that it works.

3.4 Potential for Further Research

Perhaps the most wonderful and frustrating thing about research is that it always

opens new doors. Although I wish I could pursue every one of these possibilities,

there comes a time when one must make an end. Nonetheless, I feel it’s important to

mention new topics because they are good applications for everything I have already

done. This section is a little like looking at the name on the outside of each of these

doors without actually knocking on any of them.

Fine-Tuning the System

As explained in section 3.3.2, I created a fuzzy-logic system that finds verses which

appear similar to each other. The system was made in a reasonable fashion, and

therefore I achieved reasonable results, but I did not have time to tune it to come

up with the best results possible with this technique. Because the system works so

quickly, it should also be possible to tweak some of the numbers in the fuzzy-logic

system to achieve even better results than these. This could be done by taking

a set of handmade cross-references of the Greek New Testament and running my

cross-referencing algorithm repeatedly with slightly different weights. If the results

became more like the handmade cross-references by putting more weight on one of

the parameters, then even more weight could be put on the same parameter. If the

results were inferior, then less weight could be added. The parameters which could

be altered include the increased importance of finding multi-word phrases and the

decreased importance of finding similar uncommon words.

It would also be interesting to try to use the suffix array to analyze the Koiné

84

Greek New Testament in slightly different ways. Perhaps it would be possible to

disambiguate between different meanings of a word or phrase by to using the other

words in each verse. This type of a mechanism may even be used to find Koiné

Greek idioms other than the one mentioned on page 68. Although most of these

have probably been found before, if the system could notice unusual features where

a word doesn’t function in the same way it does in other contexts, these peculiarities

would be of great interest to linguists.

It would also be interesting to use a version of the Greek New Testament which

would allow the user to see the textual variants of the original manuscripts as de-

scribed in Section 3.1.2. Perhaps finding out which textual variants obtain sub-

stantially different cross-references would also aid in tracing the original text. In

any case, if a computer assisted translation system were employed as described on

page 88.

The way the current system uses the article but totally ignores all of the parsing

information could be changed. The data structure that I used in these experiments

does load the parsing information, but it just stores it without doing anything with

it. As we saw on page 71, there are some cases where the same word in the same

area of the suffix array can be parsed many different ways in the original text. This

could be particularly important in a translation system where a previous translation

which matches the tense and mood of the original word precisely could have a much

higher weight than one where the tense is different. Nonetheless, a poor match

would probably serve better than no match at all, therefore it would probably be

better to maintain the suffix array in its current form and sort through the parsing

information afterwords.

As mentioned on page 60, there are some situations where using the article

just gets in the way. Perhaps the article could be included with the data-structure

without being included in the suffix array much the way the parsing information is.

Theoretically, if one were to use multiple suffix arrays to create approximate string

matching as described in Section 2.2, it may not be necessary to omit the article in

85

the normal case. However I think the functionality of approximate searching could

be extended even further if there were no article to get in the way. It is important

to note that just as the parsing information is extremely important to a translator,

so also the article can change the meaning of a text very substantially. However it is

usually easier use a system that generates too many matches and then weed out the

useless ones than it is to find new matches in a system that has a very restrictive

suffix array.

Using the Cross-Reference System With Other Documents

The simplest way to expand this cross-referencing system would be to apply it to

other Koiné Greek documents. Because the system works quickly, it should be fairly

easy to process as much information as one can fit in memory at any given time. The

Septuagint (i.e. the Greek translation of the Old Testament) would be the simplest

place to start, and it would probably create the most meaningful results because

of the extent to which New Testament authors referred to this text. However the

meanings of various words have also been studied by looking at how they’re used in

Roman documents, letters by the early church fathers, and other ancient writings.

It would be relatively simple and very interesting to apply this algorithm to a larger

scope of writings to find common phrases as well as common words.

One of the most difficult things that lawyers and politicians must deal with is

the sheer volume of laws, regulations, precedents, and court proceedings which have

been recorded. It could be very useful for them to find documents which are similar

to one that they have on hand and this cross-referencing system could be used to

do it. In fact, finding similarities between research papers of all disciplines could be

useful.

Using Suffix Arrays to Fight Spam

Almost everyone has to deal with at least some unsolicited e-mail. Although having

tons of junk e-mail in your inbox is unpleasant, the most distressing thing is using

86

a filter that misclassifies some legitimate messages; as Paul Graham said, “A filter

that yields false positives is like an acne cure that carries a risk of death to the

patient” [15]. Ever since Graham put a note on his website which described how to

use Bayesian filtering to stop spam in 2002, or perhaps ever since it was publicized

through slashdot, anti-spam software and research has focused on this technique [15].

He was not the first person to achieve very good results with the technique, very

promising results were obtained by using the e-mail body and header together as

early in 2000 [2]. Still, his website’s popularity certainly changed the way people

filter spam.

In brief, Bayesian filtering works by using a corpus of wanted e-mails (ham) and

unwanted e-mails (spam) to find the probability of a particular word being from a

spam e-mail. The e-mail is sorted based on the combined probability of the 15 most

interesting words (those that make the e-mail most spam-like or most ham-like).

The primary problem with Bayesian filtering is that the filtering is only as effec-

tive as the database it uses, and for new accounts there’s often no database at all! A

good database can be made by using an interactive system and white list to classify

the couple hundred e-mails after which the system becomes very accurate [8]. Un-

fortunately, most users find the initial process rather painful. A combined database

for multiple users makes initialization a little more palatable because they share

the responsibility, but it also allows one user’s mistake to corrupt the database for

everyone and it doesn’t achieve the same level of accuracy as custom databases for

each user. One good approach is using multiple databases that are weighted differ-

ently depending on their size. Even better results can be obtained by grouping five

words together [6].

In fact, this represents a totally different type of document which would could

be incredibly useful to create cross-references with. Because current anti-spam tech-

nology usually uses individual words rather than phrases to perform its searches the

technology is not as powerful as it could be. If a relatively large set of spam e-mails

were put into a suffix array, a new message could be used as a reference point to be

87

tested against various test points in the spam corpus in much the same way that

Greek was cross-referenced in Section 3.3.2. Although this wouldn’t represent an

incredible break through in the way that Paul Graham’s Bayesian techniques did, it

would allow a smaller database to be used to create a more effective barrier against

spam.

Using a Suffix Array to Translate Koiné Greek into Arbitrary Languages

One final interesting thing about the Koiné Greek New Testament is the manner in

which it is translated today. Although initially the New Testament was translated

into several other languages, including Latin, this became uncommon until Martin

Luther translated it into German in 1522 five years after starting the Protestant

Reformation. Today, organizations such as SIL are translating the New Testament

into hundreds of languages which do not already have a translation. SIL developed

a program called “adapt it” to help people translate between two closely related

languages. An interesting feature of this program is that it works without any prior

knowledge of the target language. The program literally learns the target language

as it goes. It is a translation memory designed to remember words and phrases,

but these phrases must occur in the same order in the source and target language.

It would be nice to use the data structures presented in this thesis to assist in

this translation process. Most of the efforts and literature surrounding computer

translation is focused on fully automatic translations of common languages whereas

this is an opportunity to create a computer assisted translation system for obscure

languages.

Finding the number of times a phrase is used in a target language is one of the

most important steps in Statistical Machine Translation (SMT). The suffix array

can retrieve this information extremely quickly by searching for the first and last

occurrence of the phrase—this technique is extremely common in genetic research

and could also be applied to Natural Language Processing (NLP). The fact that

there are so many repeated phrases in the New Testament proves that translation

88

even with a single, moderately sized text can be sped up through an automated

system. The problem with a small document is that suggestions would need to be

generated from a relatively small but ever-growing corpus of previously translated

text. However the fact that some phrases are repeated 24 times in a single book

shows that even a small corpus of text could greatly speed up translation (see

page 71). The wonderful thing about translations based on a small corpus is that

because the current translator probably wrote a translation, he will probably like

his translation. This could also help avoid inconsistencies in the way a particular

phrase is translated which would improve the quality of the final result.

89

Chapter 4

Suffix Arrays and Music

4.1 Background

There have been no extensive musical texts preserved which are quite as old as

the Koiné Greek New Testament, though a few ancient examples of written music

have been found which date back to this time. The dawn of western music notation,

however, can be dated back to the 9th century when a system of writing down music

for a Gregorian chants developed. Two centuries later, something like a four lined

staff was developed, and by the 16th century the modern system of a five line staff

was commonplace. It is this modern system of sheet music which this thesis uses

for its analysis.

4.1.1 Western Music Searches

There has been a significant amount of interest in using computers to search west-

ern music. One good (though brief) overview of the topic was written by Jeremy

Pickens [28]. The basic problem is that unless a person has perfect pitch, a tune

is necessarily recognized not as a sequence of notes but as a sequence of intervals.

(And even those with perfect pitch can easily identify the same melody in a different

key.) For example, a simple melody may be played at a variety of different speeds

in a number of different keys. To add to the confusion, it’s possible to have variants

of the same melody, such as a piece that modulates from a major key into a minor

key.

There has been little effort to use a suffix array to search or analyze music, though

the possibility has been mentioned previously [37]. This is unfortunate because the

structure seems to be perfect for the task. By using a suffix array, sequences of

any length may be searched efficiently, and using data-relative data structures, even

melodies in different keys could be retrieved.

91

4.1.2 Storing and Typesetting Sheet Music

As I was looking through various ways to generate sheet music, I was particularly

impressed by the quality of the typesetting generated through MusiXTEX and the

PMX preprocessor.1 The system was developed primarily by Daniel Taupin before

he died, tragically, in a climbing accident in 2003 [7]. I rejected MIDI which is the

most common way to store music and transfer it between various programs because

it does not allow the user to input typesetting commands. In retrospect, I probably

should have developed my software around MusicXML because it is easier to find

music in this format and because it is supported by a wide variety of music programs.

Preparing the Music for Analysis

Regardless of how music is typeset, the suffix array itself should be built out of

music that’s converted into a slightly different form. This is much the same as the

way every word in Koiné Greek was reduced to its dictionary form as described in

Section 3.1.1. As mentioned is Section 4.1.1, western music is written as a series

of pitches whereas people generally hear music as a series of intervals. It is also

impossible for the ear to distinguish between a melody written in 4:2 time from the

same melody written in 4:4 time, especially if the former is played at twice the speed

of the latter. In order to address these problems, in a searchable index each pitch is

not usually given an absolute value, but a value relative to the previous note. The

timing for each note is stored in a similar fashion. Instead of storing a “C quarter

note” followed by an “E half note”, it would start with a “C quarter note” (because

any progressive series must start somewhere), and then move to “up a major third,

twice as long”.

The precise format I used was designed very loosely around PMX, but it was also

1After dealing with these tools, I am still very impressed by the quality of output created with
MusiXTEX, but I’m rather dissatisfied with the capabilities of the PMX processor. Due to its
strict meter checking, it was extremely difficult to typeset the output of the suffix array which had
many partial bars that don’t add up to the correct meter. I also found the system crashed when
asked to produce more than 15 pages of information at a time.

92

designed to be similar to the Koiné Greek format I used in Chapter 3. Each input

line represented a single note in the same way a line of text represented a Koiné

Greek word. The first item in the line is the part number, the second is the bar

number, several characters were devoted both to bar lines and the note using PMX

definitions, and finally the timing and interval values were given as two hexadecimal

numbers. These are the numbers which were used to generate the suffix array, and

they were very similar to the word numbers described in Section 3.1.1.

The two numerical values may be of particular interest to someone interested

in computing music both because they are based on relative pitch and because the

PMX format specifications can be found elsewhere [7]. Each note is expressed as a

12 bit value, which is enough room for about four thousand numbers. This is split

into a 4 bit number (-8 to 7) to represent the length of a note and an 8 bit number

(-128 to 127) which represents the tone. Normally, this second number represents

the relative pitch between the current note and the previous note as a number of

semitones, but there are two special cases. The number -128 is a special case which

represents a tied note. When the note is tied to the previous, the interval will

always be 0 because by definition a tie will always sound at the same pitch. The

other exception is the number -127 which is used to represent a rest. Once again,

although the timing value is important, the pitch value is irrelevant because a rest

indicates no sound at all.

The first number is a signed nibble (4 bits forming a number between -8 and 7).

This represents the difference in time between the current note and the previous

note. First, let’s presume that the note is not dotted. Without any dots, it’s

possible to represent any note length as a function of 2x times the previous length.

This first number represents x in this equation. So a half note followed by a quarter

is represented by x = −1 because (1
2
)(2−1) = (1

2
)(1

2
) = (1

4
). Another way of thinking

of it is that the value of −1 will always indicate that the current note is half as

long as the previous note. Likewise a quarter note followed by a whole note will be

represented by x = 2 because (1
4
)(22) = (1

4
)(4) = 1. This means that a value of 2

93

will always represent a note that’s four times as long as the previous note.

The problem with this mechanism is that it still does not represent dots properly

and dots do appear frequently in western music—in fact even the piece that I analyze

for this thesis contains several dotted notes. They way I overcame this problem is

by representing a dotted note as a note without a dot which is tied to another note

that’s half the value. Using this technique two dotted notes will still occur together

in the suffix array because every other dotted note will also be represented in the

same way. The only problem is that the LCP (Longest Common Prefix) may be

skewed slightly because of this technique. Whenever I represented a dot in this

manner I left all of the PMX information blank to indicate that nothing was to be

typeset with this virtual second note.

Although I didn’t implement this for this thesis, it would also be possible to verify

that the same set of tied notes is always represented in the same way. For example,

three whole notes which are tied together could either be represented internally as a

breve followed by a whole note or as three whole notes. It would be good to develop

a system to ensure that the same sounds would always be represented internally

in a consistent way. Perhaps if two quarter notes which are tied across a bar line,

these could be represented best internally as one half note. That way they could be

found if the melody occurred in a different spot which didn’t need the tie. It would

be very important to ensure that the external representation remains the same as it

was written. For the example of the tied quarters, it would drive a musician nuts to

see a measure with an extra beat (because it now ends with a half note instead of a

quarter) followed by a measure that was missing a beat (because its first quarter is

missing). By storing the displayed information separately from the values that are

used to create the suffix array, I have achieved this result in both Koiné Greek and

music.

This method of representing music will allow every note to be based on the

previous note based on relative data. It is much like a choir singing a capella. Often

by the end of the piece the choir will have dropped by a semitone or more, much

94

to the exasperation of any members who have perfect pitch! In the same way, each

note is based more on the previous note than on the where the note should be in an

absolute sense. Also, just as a choir could speed up in the middle of a performance

if the became too nervous, the tempo of each note is also based on the previous note

rather than on the number of beats per minute. Despite the fact that the choir may

be a little slow or a little high, it’s still possible for the director to find the place

where they’re singing in a musical score.

4.1.3 Introducing the Fugue

It would be wonderful to test this algorithm against a relatively large corpus of

music the same way I used a relatively large corpus of text to test Koiné Greek. But

what corpus could I use? According to most music theorists, the most fascinating

form of music to look for patterns in would be the fugue. These contrapuntal

compositions begin with a melody which is referred to as the subject. This subject

is typically answered by another voice which repeats the subject in a different key

(almost always the dominant key). One group of fugues and preludes which would

be particularly fascinating for any music theorist to analyze is volumes I & II of Das

Wohltemperierte Klavier (The Well-Tempered Clavier) by J. S. Bach. He composed

these pieces, “for the profit and use of musical youth desirous of learning, and

especially for the pastime of those already skilled in this study.”

Each book is a set of 24 preludes and fugues written in every major and minor

key for a musical keyboard—at the time, this would be typically be a harpsichord

or clavichord.2 Unfortunately, partially because I chose to use the PMX format, I

could not obtain a copy of the entire Well-Tempered Clavier. I had to re-typeset

the one piece of music which I did use in this thesis.

2 Although the pieces could also be played on organs, these were usually still being tuned using
the quarter-comma meantone temperament. Because they were not well-tempered, they could not
play in every key. Some of the intervals in this type of tuning sound particularly beautiful, but
others are “wolf-intervals” which sound terribly out of tune even to the untrained ear. Nonetheless,
the quarter-comma meantone temperament was often used for tuning organs until the middle of
the 19th century. Pianos had only just been invented and Bach probably didn’t consider them at
all for Volume I, though he could theoretically have had them in mind as he wrote Volume II.

95

A little over a decade ago, I was watching a documentary that had an inter-

view with Glenn Gould. As they were discussing The Well-Tempered Clavier, the

interviewer asked if there were a fugue which was an archetype of the fugue. Gould

responded by playing the E major fugue from book two of the Well-Tempered Clavier

(BWV 878). Those familiar with Gould would not be at all surprised that he played

it from memory just like the other pieces and excerpts he played in the interview. I

loved the piece and learned it as soon as I had finished the documentary. It is found

on the following page.

96

şIG4444

4444
4
2

4
2

Fugue 9 from the Well Tempered Clavier II by J. S. Bach (BWV 878)

¯

Grave

˘ ˘
=

˘ ˘¸ ˇ¯
=

ˇÈÈ̌ ˇ ˇ ˇ ˇ ˇ 4ˇ˘ ˘ ˇàà̌˘
=

˘ ˘ 6ˇ 7ş 4

I
G
4444

4444
6 ˇ˘`
¯
ˇÈÈ̌ ˘ 9 ˘ ˘ˇ ˇ ˇ ˇ ˇ

˘ ˘
˘ˇ ææ̌
˘ ¸

˘ ˇ
˘
ˇĹĹ̌ˇ ˇ ˇ ˇ ˇ˘ ˇ ˇ

˘ > ˇ¯
¯ ˘ ˘
ˇ ˇ ˇ 4ˇ˘ ˘

˘¯
ˇææ̌˘

˘

˘ ˘ 6ˇ 6
‹ş 7

I
G
4444

4444

˘`` ˇ
6 ˇ¯

ˇ
ˇÈÈ̌

˘
˘

ˇ ˘`¨ ˇ
˘`“ ˇ
ˇ
ˇ ÈÈ̌

˘
˘

ˇ
ˇĹĹ̌

 ˘ ˇ
˘˘ ˘
ˇ ĹĹ̌ ˇ ˇ

˘˘
ˇ ææ̌
; ˇ˘

˘
ˇ ˘˘

4ˇ
^ ˘ ˙ ¸˘ ˙ ¯

˘ ˘ ˘ ˘˘ ˙ ¸

ş 10

I
G
4444

4444

¸˘ ˘
˘ ˘

¯˘
ˇ¸

˘
˘ ˇ

˘ˇ
8 ˇ¯

˘˘
˘

ˇ
ˇ 4ÉÉ̌

˘ˇ
ˇ˘
ˇ ÈÈ̌
˘

˘ˇ
6̆

ˇ
ˇÈÈ̌

¯ˇ ˇ
˘`˘

ˇ ææ̌
˘

˘ ˘ˇ ˘ ˘
ˇ 4̌̄ ˇ ˇ ˇ

˚ş 13

I
G
4444

4444

¯ ˇ ˇ ˇ ˇ` ˘ ˘ ˇ 4ˇ ˘
ˇ ˇ ˇ ˇ ˇ ˇ ˘ˇ ˇ ˘ ˝ ˘ ˘

ˇ ˇ ˘ ; ˘ˇ ˇ ˇ ˇ ˇ ˇ
= ˘ ˘ ¯¯ ‹ ˘`

˘˘
ˇ ĹĹ̌

¯ ¯ˇ ˘ ˘ ˝ ˇ ˇ
ˇ ˇ ˇ ˇ ˘ˇ 4̌ ˇ ˇ ˇ ˘

tr˘
˘ ˇ

ţ 16

I
G
4444

4444

˘ > ˇ 6˘`ˇ ˇ ˘ ¨ ˇ
¯ ˘¯ ¸

ˇ 4ÉÉ̌ ˘
˘
4ˇ ˘`¨ ˇ

˘¯
6ˇ ÈÈ̌ ˇ

˘
ˇˇ ÈÈ̌ ˘˘`

ˇ ˇ˘

˘
˘˘
ˇ ˘˘`
: ˇ˘ ˇ 4ÉÉ̌

˘
˘˘

˘4ˇ ˘`
9 ˇ˘ 6ˇÈÈ̌

˘
ˇ˘
ˇ
ˇÈÈ̌

ţ 19

I
G
4444

4444

¯ˇ`
˘`ˇ ˇ
6 (ˇ ˇ ˇÊ̌Ê̌̌
˘

˘˘
˘`˘ ˇ ˇ 4ÉÉ̌

˘˙
˘ 4ˇ

˘¯
˘`˝ ˇ ˇ ÈÈ̌

˘
ˇ 4ˇˇ ÈÈ̌

ˇ ˘˘
˘ˇ ˇ

˘
6 ˘4˘

ˇĹĹ̌ ˘˘
¯ˇ ˇ

˘˘
˘

˘˜ ˇ
A ˘4ˇ ˘

˘˘
˘˘
4ˇ
˜

ţ 22

I
G
4444

4444

˘˘
˘` ˇ

˘6̆
˘˘

˘¯
˘ˇ ` ˇ

˘
˘˘ 4ˇ

ˇ ˇ ˇ ˇ ˘ ˇ ˇ‹ ˘` ˇ 4ˇ ˇ ˘
ˇ ˇ ˘ ; ˘ ˇ 4ˇ¯ ˇ ˇ ˘

6ˇ ˇ 4ˇ ˇ ˇ ˇ ˘˘ ˇ ˇ ` ˇ 4ˇ ˇ 4ˇ
˘` 6ˇ ˘ Ğ ˘ˇ ˇ ˇ ˘ ˘ ˇ ˇ

ţ 25

I
G
4444

4444

¯ˇ
ˇ˘`
ˇ ÈÈ̌
ˇÈÈ̌

˘
4˘

4ˇ 4ˇ ˘˜ ˘ ˇ ˇ
ˇ ˇ ˘ˇ ˇ ˇ ˘

< ˇ˘`
ˇ¸

˝^ ˇ
ˇÈÈ̌
˝^ ˘ ¯ˇ ˘
ˇ ˇ 4ˇ˙

˘
˘ ˘ ˇ
C ˘ ˘ ˇ ˇ ˘˘ ˙ ¸

˘ ˘ ˇ ˇ ˇ ˇˇ ˇ ˇ ˇ ˘ 4˘

ţ 28

I
G
4444

4444

˘ ˙ ˙ ˘˙ ˘ ˇ ˇ ˇ ˇ
ˇ 6ˇ ˇ ˇ ˇ ˇ ˇ ˇ¯ ” ˘` 4ˇ

ˇ ˇ ˇ ˇ ˘ˇ 6ˇ ˇ ˇ ˘
ˇ ˇ ˇ ˇ ˘`ˇ ˇ 6ˇ ˇ ˇ 4ˇ

˘˘
˘ ˇ

˘˘`
ˇ ˇ˝ ˘`

˘
˘

ˇ ˇ ˇ ˇˇ ˘` ˇ
¯ˇ ˇ ˘ 4̌

ţ 31

I
G
4444

4444

ˇ ˇ ˇ ˇ ˘` ˇˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
˘ 6˘ ˘ ˘˘ > ˇ ˇ ˇ ˇ ˇ

ˇ ˇ ˇ 4ˇ ˘` ˇˇ ˇ ˇ ˇ ˇ ˇ ˘
ˇ ˘ ˇ ˇ 6ˇ ˇ ˇ˘ ˘ ˘ ˘

ˇ ˇ 4ˇ 5 ˇ ˘`˚ ˇ ˇ ˇ 4ˇ ˇ ˇ
ˇ 5ˇ ˇ 4ˇ ˇ 64ˇˇ ˇ ˇ ˇ ˘

˘
˘4˘
ˇ
¨

ţ 34

I
G
4444

4444
˘˘`
˘` ˇ ˇ 5ÉÉ̌

4˘
5˘˘
4ˇ ÈÈ̌ ˘ˇ ˇ

¯˝ ˘`

˘
˘
ˇ

˘˘
˘˘

˙ ¸˙ ¯
˘ ˘ ˘> ˇ ˇ ˇ ˇ ˇ

¸ ˘ ˘
˘ ˘ˇ ˇ ˇ ˇ

¯ ˘
˘ˇ
ææ̌

˘
˘˘ ˇ ´

ţ 37

I
G
4444

4444

˘˘
ˇ` ˇ ˇˇ ÉÉ̌

˘˙
ˇ 4ˇ˘

˘˙
ˇÛÛ̌ˇ

˘> ˇ
˘ 6ˇ> ˘

ˇ > ˙ˇ ˇ ˇ ˇ
: ˇ ˇ ˇ ˇ˘ ˘

¸ ˇ
ÛÛ̌
ˇ˘

˘ ˇ
ˇ ˇ ˇ˘

ˆ

ţ 39

I
G
4444

4444
` ˇ çç̌
ˇ˘

˘ ˇ
ˇ ˇ ˇ˘

¸ˆ ˇ
çç̌
ˇ˘

˘ ˇ
ˇ ˇ ˇ˘

¯¯
: ˇ¸ ˇ ˇÉÉ̌

ˇ

˘ˇ
˘ >ˇ ˇ ˘

ˇ
ˇĽĽ̌

˘ˇ ˇ
ˇ 4ˇ˙

ˆţ 41

I
G
4444

4444

˘` ˇ
ˇææ̌
˙

˘ˇ ˇ ˇ
˘ 6ˇ˘

˘ˇ
6 ˇòò̌˘

˘ˇ ˇ ˇ
˘ ˇ˘

˘˘
8 ˇòò̌˘

˘˘
˘ ˘ ˇ

ˇ ˇˇ >
ˇ >ˇ ˇ ˇ ˇ

ˇ ˇ> ˇ> ˇˇ ˇ
¯˘`
˘˘ ˘˘

ˇ Q¯ ¯
¯ P¯

4.2 Analyzing the Fugue

There are several fairly simple things that someone can notice about this fugue. It

was written in the key of E major. At just three pages, it is relatively short, but

long enough to obtain useful results. It also has four parts. In fact, I used the names

soprano, alto, tenor, and bass to represent the four parts even though this is not

a choral piece (though it would be fun to try). But perhaps the most interesting

thing about the fugue is the fact that the subject is very short and that it repeated

without any alterations (i.e. it has a real answer not a tonal answer). This last

point is important because otherwise it would be far more difficult to analyze using

a suffix array.

4.2.1 Finding the Subject in the Suffix Array

On the following page, I have included a part of the raw output from suffix array

which contains the subject. This subject occurs unaltered in the fugue 16 different

times! One can see several differences between the normal sheet music on the previ-

ous pages and the suffix array in the following pages. One difference is that the piece

has four parts whereas the suffix array only considers one part at a time. Another

difference is that many of the bars at the beginning and end of each line of the

suffix array don’t match the time signature of the piece. They are merely excerpts

starting at arbitrary positions. There is also no key signature in the suffix array,

instead every note is expressed using accidentals. This is somewhat awkward, but it

avoids the problem of not seeing accidentals that begin before the current position

in the bar. For example, in the soprano part (the top line) in bar 15, there is a

b-sharp as the second note. At some point in the suffix array, the following b-sharp

will be displayed at the beginning of the bar. If a person reads this line in the suffix

array, they would be unable to see the previous b-sharp with its accidental, and

therefore they would probably play the note as a b-natural instead. It may not be

the most elegant looking solution, but I have avoided this problem by ignoring the

key signature entirely and expressing every note using an accidental.

100

I
Subject from the Suffix Array of the Bach Fugue

Line 1 LCP 2 Bass bar 30

6˘ 4ˇ 6ˇ 4ˇ 4ˇ 4̌ 6ˇ 4ˇ 4ˇ 6˘` 4ˇ 6ˇ 4ˇ 4̌ 4ˇ

I
Line 2 LCP 4 Tenor bar 9

6¯ 4˘ 6˘ 4˘ 4˘ 4˘ 6˘ 4˘ 4˘ 6¯ 6˘ 6˘ 4¯ 4ˇ 4ˇ 6ˇ
G

Line 3 LCP 4 Soprano bar 17

6¯ 4˘ 6˘ 4˘ 4˘ 6˘ 4˘ 4ˇ 4ˇ 4˘ 9 4ˇ 4ˇ 4ÉÉ̌ 4˘ < 4ˇ 6 (ˇ
I

Line 4 LCP 5 Tenor bar 28

6˘ 4ˇ 6ˇ 4ˇ 4ˇ 6ˇ 6ˇ 4ˇ 6ˇ 6˘ 6˘ 6˘` 6ˇ 4˘`

I
Line 5 LCP 5 Tenor bar 35

6¯ 4˘ 6˘ 4˘ 4˘ 6˘ < < > 6ˇ 4ˇ 6ˇ 4ˇ 4ˇ 6ˇ 6áá̌
I

Line 6 LCP 5 Bass bar 40

6¯ 4˘ 6˘ 4˘ 4˘ 6˘ 6˘ 4˘ 4˘ 6ˇ 4̌ 4ˇ 6ˇ 6¯ 6̄ =

I
Line 7 LCP 5 Tenor bar 2

6¯ 4˘ 6˘ 4˘ 4˘ 6˘` 6ˇ 6ˇ 6ˇ 4ˇ 4ˇ 6ˇ 6ÛÛ̌ 6˘ 4ˇ

G
Line 8 LCP 5 Alto bar 4

6¯ 4˘ 6˘ 4˘ 4˘ 6˘ > 6ˇ 6ˇ 4ˇ 4ˇ 4ˇ 6ˇ 4ÛÛ̌ 6˘ 6ˇ

G
Line 9 LCP 4 Soprano bar 5

6¯ 4˘ 6˘ 4˘ 4˘ 6¯ ˝ 6ˇ 6ˇ 4ÉÉ̌ 6̆ ; 6̆ 4˘ 4˘ 6˘ 4˘ <

I
Line 10 LCP 5 Bass bar 10

6¯ 4˘ 6˘ 4˘ 4˘ 6¯ 6˘ 6˘ 4¯ 4ˇ 4ˇ 6ˇ 6ˇ 4ˇ 4ˇ 4˘
I

Line 11 LCP 4 Bass bar 36

6¯ 4˘ 6˘ 4˘ 4˘ 6ˇ > < = = = 6¯ 4˘ 6˘ 4˘ 4˘

G
Line 12 LCP 5 Alto bar 16

6¯ 4˘ 6˘ 4˘ 4˘ 6ˇ 4ˇ 4̆ = 4ˇ 4̌ 4ÉÉ̌ 4˘ : 4ˇ 6ˇ 4ÉÉ̌ 6ˇ
G

Line 13 LCP 5 Alto bar 30

6¯ 4˘ 6˘ 4˘ 4˘ 6ˇ 6̆ 4ˇ 4ˇ 6ˇ 4ˇ 6ˇ 6ˇ 5ˇ 4ˇ 4ˇ
I

Line 14 LCP 5 Bass bar 19

6¯ 4˘ 6˘ 4̆ 4˘ 6ˇ 4˘ 6ˇ 6ĽĽ̌ 4˘ 6˘ 6̆ 4˘ 4˘ 6˘ 4˘
I

Line 15 LCP 5 Bass bar 1

6¯ 4˘ 6˘ 4˘ 4˘ 6ˇ 4ˇ 4ÉÉ̌ 4ˇ 6ˇ 6ˇ 4ˇ 4ˇ 4ˇ 6ˇ 4ÛÛ̌
G

Line 16 LCP 4 Soprano bar 11

6¯ 4˘ 6˘ 4˘ 4˘ 4̌ 4ˇ 4ˇ 6ˇ 6ˇ 4ˇ 6˘ ˜ 6˘ 6˘ 4¯ < 4˘`

The first occurrence of the theme in the piece is actually the 15th occurrence

in the suffix array. The text below the line 15 reads, “Line 15 LCP 5 Bass bar 1”.

The text “Line 15” is simply a line number which makes it easier for me to talk

about the suffix array using text. The “LCP” is the Longest Common Prefix which

represents the number of intervals which this line has in common with the previous

line. If you compare line 15 to line 14, you will see that they actually share six notes

in common whereas line 15 and 16 share only five (the second pair is a little more

obvious because it’s not transposed). The reason the LCP is one less is because

internally the suffix array starts at the second note which it sees as, “a note a

full tone higher than the previous one, and half the length”. This mechanism was

described in detail in Section 4.1.2. The next piece of information is the voice which

“sings” this particular part, in this case it’s the bass line (the bottom line in the

piece). The final piece of information is the bar number which is extremely useful

for finding the part in the piece. It is useful for this chapter in much the same way

that the verse reference is useful in Chapter 3.

One final interesting thing that this suffix array shows is how the relative timing

and pitch information allows different kinds of matches. For example, Line 3 and

Line 4 of the suffix array share the same pitch information (though on a different

octave), but line 4 is twice as fast. This is one of two times Bach doubled the speed

of the subject in his fugue. Line 5 and Line 6 of the suffix array show a place where

the bass part is very similar to the tenor part a few bars earlier, but the tenor part

is out by half a bar. This is because the bar markers are ignored in the suffix array.

The place the bass actually first answers the subject presented by the tenor in Line 5

is in Line 11, and here the bass part is also offset by half a bar. The suffix array also

shows how relative pitch can be used to obtain more matches. In seven cases the

subject appears in the tonic key (starting with an E), and in nine cases the subject

is written in the dominant key (starting with a B). If no relative pitches were used,

or worse, if absolute octaves were used, then the subject would not appear at least

half the time.

103

30

G
4444 ¯ ˘ ˘ ˘ ˘ ˇ ˘ ˇ ˇ 6 ˇ ˇ ˇ

Figure 4.1: A seven note sequence taken from the Alto part.

31

I4444 ˇ ˇ ˇ ˇ ˘` ˇ ˇ ˇ ˇ 4ˇ ˘` ˇ ˇ ˇ 4ˇ 5̌ ˘` ˇ

Figure 4.2: Bar 31 is repeated for 12 notes starting at bar 32 in the same line.

4.2.2 Three Other Interesting Passages

There are a few other interesting passages which are repeated several times in the

suffix array. One such passage is shown in Figure 4.1. These seven notes are found

in the alto part in Bar 16, this is echoed in the bass part in Bar 19, and it’s repeated

again in the alto part at the top of the last page in Bar 30. Although it’s not too

difficult to hear the way the alto part in Bar 16 is repeated in the bass a few bars

later, it would be difficult to find the last occurrence of such a theme without the

use of a suffix array.

There is a 12 note repetition shown in Figure 4.2 which shows Bach’s mastery of

counterpoint. What’s most amazing about this is that the bass at Bar 31 is repeated

a semitone higher in Bar 32 and this is repeated again in Bar 33 a semitone higher

yet. This means that Bar 32 is functioning as the beginning of the sequence and

the end of the same sequence—12 of notes are repeated despite the fact that there

are only 18 notes overall! Bach switches the key repeatedly after a climax in Bar 29

gradually to build the listener up to anticipate another resolution in Bar 35. The

most amazing part about this is the fact that this sequence not only sounds the

same, but every tone is precisely the same interval as the previous one (presuming

equal temperament). This is the type of data that suffix array algorithms such as

the one presented in Section 2.1 must use inductive reasoning to resolve.

No discussion of this fugue would be complete without mentioning its counter-

104

Alto

6

G
4444 ˇ ˇ ˇ 4̌ ˇ

òò
ˇ ˘ 6ˇ < ˇ ˇ

ÎÎ
ˇ ˘ ˘` ˇ

ŐŐ̌

Bass

3

I4444 ˇ ˇ ˇ 4ˇ
ˇ
ìì̌
˘ 6ˇ ˚ ˇ ˇ

ÔÔ̌
˘ ˝ ˘ ˘

Soprano

36

G
4444 ˇ ˇ ˇ ˇ ˇìì̌

˘ ˇ ¨ ˇ ˇ
ÔÔ̌
˘ ˇ >

˘

Tenor

4

I4444 ˇ ˇ
ˇ ˇ ˇ

ìì̌
˘ ˇ ˘ ˇ ˇ ˘ ˘

Figure 4.3: The countersubject is in different positions in all four voices.

subject. This is found once in each of the four voices, and the order shown in

Figure 4.3 is the order they occur in the suffix array. By definition the counter-

subject is written to harmonize with the subject, and by refering to the original

piece using the bar numbers, one can see that this happens each of the times the

countersubject occurs. There are many notes in common in this countersubject,

especially between the alto, bass, and soprano parts.

4.3 Potential for Further Research

The simplest way to extend the research of suffix arrays and music is to create a

larger corpus of music. Although a fugue serves as a particularly good example—

good enough to prove that the data structure is useful for analyzing music—the

techniques presented in this thesis would be more useful if a larger body of music

were analyzed. It would be good to search for common passages among a composers

complete works, and it could be even better to do so for an even larger body of music.

One of the largest examples of compiling a large corpus of music is that the

105

suffix array could be used for searching through the entire corpus very efficiently.

Most such tools search only for common themes which are indexed separately from

the piece, but with a suffix array, thousands of scores could be searched easily

and simultaneously. Even better than this, accurate frequency information for an

excerpt could be retrieved passage can be retrieved in the time it takes to make

two searches using a suffix array—one to find the first entry, and one to find the

last. The difference between these two references represents the number of times the

passage occured. This information could be extremely useful to music theorists who

wish to determine how often a set of intervals are found in musical compositions.

The greatest advantage of PMX is that it creates really good looking sheet

music in a manner that’s flexible enough to allow changes in a score, but its greatest

problem is that very few programs export to the PMX format. One way to make

this research more applicable and more useful would be to allow it to use different

formats. Although MIDI would be useful because it is extremely common, it could

be better to use a format that is designed for typesetting music rather than listening

to music. The most common format of this type seems to be MusicXML. This format

can be read and written by over one hundred programs. Perhaps different formats

could be employed simultaneously because the internal format used by the suffix

array would have to be different than the display information anyway, as described

in Section 4.1.2.

This thesis does not do anything to track chord progressions because only one

note is considered at any given time. One of the problems with tracking chord

progressions is that the algorithms used to find the current chord could easily become

more complicated than the algorithm for the suffix array itself! Finding a chord for a

given set of notes would be relatively easy except that western music allows various

non-chord tones to “pollute” the data. Just considering neighbor tones, passing

tones, and pedal points would be enough to make a programmer’s head bleed. If

this problem could be solved even partially, however, the resulting chord information

would be extremely interesting to a music theorist, and there’s no reason that this

106

data could not be stored in a suffix array. This is a large part of the way people

perceive music, so it would be a useful project to pursue.

Approximate Matching for Music

Beyond transforming music to record intervals and times for each note rather than

an absolute times and pitch, it would be possible to set up an approximate string

matching algorithm for music which is similar to the one described for text in Sec-

tion 2.2. Although skipping individual notes could be somewhat useful (as suggested

for approximate string matching for text), music is a different type of language that

would be better served through a different kind of changes. It’s not uncommon

for a composer to write a theme and then changed it between a major and minor

key. It would not be extremely difficult to generate two sets of data from a piece

of music written in a minor key: one for the music as written and another which is

transformed into the parallel major key. This concept could be extended to include

music modes other than major and minor. Given a small enough corpus or a large

enough memory, it is possible for this type of system to match pieces of data that

the ear would consider related but a computer would have difficulty working with.

The final and perhaps most difficult change would be to adjust the rhythm

to match the same melody expressed in different ways. One moderately simple

example of this is changing between straight rhythm and swing, but even this would

be difficult. It could be easiest to remove the rhythm information altogether for

these types of searches. A fugue is designed to be so intricate that the repetition

is moderately easy to see in the music but difficult to hear among all the other

sounds. Perhaps the greatest challenge to an algorithm such as this would be to

find parallels which are designed to be easy for the listener to hear but difficult to

see on the page. One such piece is an organ work created by J. S. Bach: Passacaglia

and Fugue in c minor (BWV 582). A passicaglia repeats the same theme many

times with a different harmonization each time. The theme is usually found in the

bass line and often it is very easy to spot. However, other times various rests and

107

ornamental notes are added which make the melody harder to see. By listening to

these sections, one can usually perceive the melody fairly easily because the most

important notes still come on the beat. There are some times when it is difficult

even for the listener to make out the melody, but the chord progressions are the

same. Finding this theme in each of its versions would be an excellent test for a

system that is designed to overlook subtle rhythmic variations.

108

Conclusion

The suffix array data structure was developed for computational linguistics, uti-

lized in data compression, and wholeheartedly adopted by genetic research. It is

a relatively new data structure which has attracted a great deal of research over

the past decade. The problem of constructing a suffix array has been of particular

interest and this topic has attracted most of the attention in recent papers. Several

other concepts have also been explored, such as using a suffix array to search data

which is compressed. In general, a suffix array is a mechanism for creating a search-

able index. It is particularly useful for finding the number of occurrences of a query

and searching through data with no word boundaries.

This thesis has presented two novel uses for the suffix array. Although it’s fairly

common to use a suffix array to process language, this is usually done character by

character. Instead, this thesis uses a numeric index of stemmed words as its alpha-

bet in order to find textual similarities at a sentence level rather than a word level.

Such a large alphabet requires choosing a construction algorithm rather carefully.

Although using a suffix array to process words is not unheard of, using it to process

Koiné Greek is even more novel. I know that a searchable index of an English trans-

lation New Testament has been created using a suffix array as a proof of concept,

but this is could be the first time it’s used as a mechanism for analyzing the Greek

text. Although creating a searchable index for western music is also relatively rare

(probably due to the numerous musical formats and the difficulties associated with

finding textual similarities in similar sounding passages), I believe it is very uncom-

mon to use a suffix array as part of this process. The suffix array may be a novel

tool for this task, but it seems extremely well suited. This is because, like a genetic

sequence, a musical passage cannot easily be separated into words or sentences.

I have used a Suffix Array primarily to find the Longest Common Prefix in a

Greek text and a piece of music. The longest prefixes correspond to similar passages

in both music and language, and I have shown how the tool is particularly useful for

analyzing parsed Koiné Greek and a musical fugue. The techniques used here also

represent exciting opportunities for further research. They could be used to create a

110

large searchable index of western music or they could be used to translate the New

Testament into new languages. I have uncovered new applications for the Suffix

Array (or at least old applications utilizing new techniques). I have used this data

structure in a way that no one else has, so by definition this thesis is groundbreaking.

But I feel as if I have scratched through some topsoil only to reveal the rocks and

clay which lie below.

111

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz, Optimal

exact string matching based on suffix arrays, SPIRE 2002: Proceedings of the

9th International Symposium on String Processing and Information Retrieval

(London, UK), Springer-Verlag, 2002, pp. 31–43.

[2] Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos, and Con-

stantine D. Spyropoulos, An experimental comparison of naive bayesian and

keyword-based anti-spam filtering with personal e-mail messages, SIGIR ’00:

Proceedings of the 23rd annual international ACM SIGIR conference on Re-

search and development in information retrieval (New York, NY, USA), ACM,

2000, pp. 160–167.

[3] Nieves R. Brisaboa, Yolanda Cillero, Antonio Farina, Susana Ladra, and Oscar

Pedreira, A new approach for document indexing usingwavelet trees, DEXA

’07: Proceedings of the 18th International Conference on Database and Expert

Systems Applications (Washington, DC, USA), IEEE Computer Society, 2007,

pp. 69–73.

[4] M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algo-

rithm., Tech. Report 124, 1994.

[5] Chris Callison-Burch, Colin Bannard, and Josh Schroeder, Scaling phrase-based

statistical machine translation to larger corpora and longer phrases, ACL ’05:

Proceedings of the 43rd Annual Meeting on Association for Computational

112

Linguistics (Morristown, NJ, USA), Association for Computational Linguistics,

2005, pp. 255–262.

[6] Shalendra Chhabra, William S. Yerazunis, and Christian Siefkes, Spam filtering

using a markov random field model with variable weighting schemas, ICDM

’04: Proceedings of the Fourth IEEE International Conference on Data Mining

(Washington, DC, USA), IEEE Computer Society, 2004, pp. 347–350.

[7] Ross Mitchell Daniel Taupin and Andreas Egler, Verner icking mu-

sic archive: Musixtex files, 2009, http://icking-music-archive.org/

software/indexmt6.html [Online; accessed 31-August-2009].

[8] M. D. del Castillo and J. I. Serrano, An interactive hybrid system for iden-

tifying and filtering unsolicited email, WI ’05: Proceedings of the 2005

IEEE/WIC/ACM International Conference on Web Intelligence (Washington,

DC, USA), IEEE Computer Society, 2005, pp. 814–815.

[9] Minhawn Kim Dong Kyue Kim and Heejin Park, Linearized linearized suffix

tree: an efficient index data structure with the capabilities of suffix trees and

suffix arrays, Algorithmica (2007).

[10] P. Ferragina and G. Manzini, Opportunistic data structures with applications,

FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Com-

puter Science (Washington, DC, USA), IEEE Computer Society, 2000, p. 390.

[11] Paolo Ferragina and Roberto Grossi, Fast string searching in secondary storage:

theoretical developments and experimental results, SODA ’96: Proceedings of

the seventh annual ACM-SIAM symposium on Discrete algorithms (Philadel-

phia, PA, USA), Society for Industrial and Applied Mathematics, 1996, pp. 373–

382.

113

http://icking-music-archive.org/software/indexmt6.html
http://icking-music-archive.org/software/indexmt6.html

[12] Paolo Ferragina and Giovanni Manzini, An experimental study of a compressed

index, Information Sciences 135 (2001), no. 1-2, 13–28.

[13] Edward Fredkin, Trie memory, Commun. ACM 3 (1960), no. 9, 490–499.

[14] Alexandre Gil and Gaël Dias, Using masks, suffix array-based data structures

and multidimensional arrays to compute positional ngram statistics from cor-

pora, Proceedings of the ACL 2003 workshop on Multiword expressions (Mor-

ristown, NJ, USA), Association for Computational Linguistics, 2003, pp. 25–32.

[15] Paul Graham., A plan for spam, 2002, http://paulgraham.com/spam.html

[Online; accessed 31-August-2009].

[16] Dong Kyue Kim Jeong-Eun Jeon, Heejin Park, Efficient construction of gener-

alized suffix arrays by merging suffix arrays, Journal of KISS: computer systems

and theory 32 (2005), 268–278.

[17] Heejin Park Jeong-Seop Sim, Dong Kyue Kim and Kun-Soo Park, Linear-

time search in suffix arrays, Journal of KISS: computer systems and theory 32

(2005), no. 5, 255–259.

[18] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park,

Linear-time longest-common-prefix computation in suffix arrays and its applica-

tions, CPM ’01: Proceedings of the 12th Annual Symposium on Combinatorial

Pattern Matching (London, UK), Springer-Verlag, 2001, pp. 181–192.

[19] Joao Paulo Kitajima and Gonzalo Navarro, A fast distributed suffix array gen-

eration algorithm., SPIRE/CRIWG, 1999, pp. 97–105.

[20] Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt, Fast pattern

114

http://paulgraham.com/spam.html

matching in strings, SIAM Journal on Computing 6 (1977), no. 2, 323–350.

[21] Pang Ko and Srinivas Aluru, Space efficient linear time construction of

suffix arrays., CPM (Ricardo A. Baeza-Yates, Edgar Chvez, and Maxime

Crochemore, eds.), Lecture Notes in Computer Science, vol. 2676, Springer,

2003, pp. 200–210.

[22] Philipp Koehn, Franz Josef Och, and Daniel Marcu, Statistical phrase-based

translation, NAACL ’03: Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human

Language Technology (Morristown, NJ, USA), Association for Computational

Linguistics, 2003, pp. 48–54.

[23] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and

reversals, Soviet Physics Doklady 10 (1966), 707+.

[24] M. A. Maniscalco and S.J. Puglisi, Faster lightweight suffix array construction,

In Proceedings of 17th Australasian Workshop on Combinatorial Algorithms,

2006, pp. 16–29.

[25] Edward M. McCreight, A space-economical suffix tree construction algorithm,

J. ACM 23 (1976), no. 2, 262–272.

[26] Joong Chae Na and Kunsoo Park, Alphabet-independent linear-time construc-

tion of compressed suffix arrays using o(nlogn)-bit working space, Theor. Com-

put. Sci. 385 (2007), no. 1-3, 127–136.

[27] Gonzalo Navarro and Veli Mäkinen, Compressed full-text indexes, ACM Com-

put. Surv. 39 (2007), no. 1, 2.

115

[28] J. Pickens, A survey of feature selection techniques for music information re-

trieval, 2001.

[29] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin, A taxonomy of suffix

array construction algorithms, ACM Comput. Surv. 39 (2007), no. 2, 4.

[30] Simon J. Puglisi, William F. Smyth, and Andrew Turpin, The performance

of linear time suffix sorting algorithms., DCC, IEEE Computer Society, 2005,

pp. 358–367.

[31] , Inverted files versus suffix arrays for locating patterns in primary mem-

ory., SPIRE (Fabio Crestani, Paolo Ferragina, and Mark Sanderson, eds.), Lec-

ture Notes in Computer Science, vol. 4209, Springer, 2006, pp. 122–133.

[32] Ranjan Sinha and Justin Zobel, Cache-conscious sorting of large sets of strings

with dynamic tries, J. Exp. Algorithmics 9 (2004), 1.5.

[33] James Tauber and Ulrik Petersen, Ccat morphgnt, 2006, http://files.

morphgnt.org/ccat-morphgnt/ [Online; accessed 31-August-2009].

[34] , Ccat morphgnt on archive.org, 2007, http://web.archive.org/web/

20071216141051/morphgnt.org/projects/ccat-morphgnt [Online; accessed

31-August-2009].

[35] Yuanyuan Tian, Sandeep Tata, Richard A. Hankins, Jignesh M. Patel, and

Jignesh M. Patel, Practical methods for constructing suffix trees, The VLDB

Journal 14 (2005), no. 3, 281–299.

[36] Esko Ukkonen, Approximate string-matching over suffix trees, CPM ’93: Pro-

ceedings of the 4th Annual Symposium on Combinatorial Pattern Matching

116

http://files.morphgnt.org/ccat-morphgnt/
http://files.morphgnt.org/ccat-morphgnt/
http://web.archive.org/web/20071216141051/morphgnt.org/projects/ccat-morphgnt
http://web.archive.org/web/20071216141051/morphgnt.org/projects/ccat-morphgnt

(London, UK), Springer-Verlag, 1993, pp. 228–242.

[37] Eiko Yamamoto, Masahiro Kishida, Yoshinori Takenami, Yoshiyuki Takeda,

and Kyoji Umemura, Dynamic programming matching for large scale informa-

tion retrieval, Proceedings of the sixth international workshop on Information

retrieval with Asian languages (Morristown, NJ, USA), Association for Com-

putational Linguistics, 2003, pp. 100–108.

[38] Mikio Yamamoto and Kenneth W. Church, Using suffix arrays to compute

term frequency and document frequency for all substrings in a corpus, Comput.

Linguist. 27 (2001), no. 1, 1–30.

[39] Jeong-Seop Sim Yong-Wook Choi and Kun-Soo Park, Time and space efficient

search with suffix arrays, Journal of KISS: computer systems and theory 32

(2005), no. 5, 260–267.

[40] Kamen Yotov, Keshav Pingali, and Paul Stodghill, Automatic measurement of

memory hierarchy parameters, SIGMETRICS Perform. Eval. Rev. 33 (2005),

no. 1, 181–192.

[41] Justin Zobel and Alistair Moffat, Inverted files for text search engines, ACM

Comput. Surv. 38 (2006), no. 2, 6.

[42] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao, Inverted files ver-

sus signature files for text indexing, ACM Trans. Database Syst. 23 (1998),

no. 4, 453–490.

117

	Abstract
	Contents
	Introduction
	An Overview of Suffix Arrays
	Background
	Structure of the Suffix Array & Suffix Tree
	Basic Uses for Suffix Arrays
	General Searching
	The Burrows and Wheeler Transform
	The Longest Common Prefix

	Alternatives to Suffix Arrays
	Basic String Matching
	Suffix Trees
	Inverted Files

	Hot Topics about Suffix Arrays
	Constructing a Suffix Array
	Searching a Suffix Array
	Compressing a Suffix Array
	Cache Aware Programming

	A Survey of Surveys
	An End of an Overview

	Two Suffix Array Algorithms
	Ko and Alru's O(n) Construction Algorithm
	Step 1: Finding L-Type and S-Type Suffixes
	Step 2: Sorting all the S-Type Suffixes
	The Recursive Step
	Step 3: Sorting the L-Type Suffixes from the S-Type Data

	Approximate String Matching

	Suffix Arrays and Koiné Greek
	Background
	Description of the Format
	Textual Limitations

	Finding Phrases in the Greek New Testament
	Methodology
	About the Longest Common Prefix (LCP)
	Program Performance
	Common Phrases in the Greek New Testament
	Interesting Phrases in the Greek New Testament

	Cross-Referencing the Greek New Testament
	What the Algorithm Does
	How the Algorithm Works
	Whether the Algorithm Performed

	Potential for Further Research

	Suffix Arrays and Music
	Background
	Western Music Searches
	Storing and Typesetting Sheet Music
	Introducing the Fugue

	Analyzing the Fugue
	Finding the Subject in the Suffix Array
	Three Other Interesting Passages

	Potential for Further Research

	Conclusion
	Bibliography

